BODY BUILDER INSTRUCTIONS

Volvo Trucks North America

Body Builder, General Guidelines and Certification VN, VHD, VAH Section 0

Introduction

The information in this document was developed to assist our customers throughout the body planning and installation process. This information will assist with the required specifications and guidelines for completion for your specific applications.

The information in this document does not include each and every unique situation that you may encounter when working on Volvo vehicles. Volvo Trucks North America cannot possibly know, evaluate, or advise someone on all the types of work that can be done on a Volvo vehicle and all the appropriate ways to do such work. This includes all of the possible consequences of performing such work in a certain manner. Therefore, any situations or methods of working on a Volvo vehicle that are not addressed in this document are not necessarily approved by Volvo Trucks North America.

In the event that you require additional assistance, please contact Volvo Body Builder Support at 877-770-7575.

Unless otherwise stated, following the recommendations listed in this document does not automatically guarantee compliance with applicable government regulations. Compliance with applicable government regulations is your responsibility as the party making the additions/modifications. Please be advised that the Volvo Trucks North America vehicle warranty does not apply to any Volvo vehicle that has been modified in any way, which in Volvo's judgment might affect the vehicles stability or reliability. The information, specifications, and illustrations in this document are based on information that was current at the time of publication. Please note that illustrations are typical and may not reflect the exact arrangement of every component installed on a specific vehicle.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted by any means including (but not limited to) electronically.

Note: The VNM model will be replaced with the new VNR model, which will start production in late August or early September 2017. The VNM model and the new VNR model will share the same cab, chassis, and fuel tank dimensions.

Contents:

- "Introduction", page 1
- "Glossary", page 3
- "Certification Label", page 4
- "Center of Gravity", page 5

- "Brake Modification Guidelines", page 6
- "Air-operated Accessories", page 7
- "Welding", page 8
- "Battery Charging and Jump Starting", page 9
- "Data Link Wiring", page 10
- "Towing Procedure", page 12
- "Weight Distribution", page 17
- "Conversion Factors", page 26
- "Chassis Diagrams, VHD", page 28
- "Chassis Diagrams, VAH", page 44
- "Chassis Diagrams, VNM / VNR", page 46
- "Chassis Configurations, VHD", page 54
- "Chassis Configurations, VN", page 62
- "Fuel Tank Position, VHD", page 68
- "Fuel Tank Position, VN", page 82

Glossary

Gross Axle Weight Rating (GAWR) The maximum rated capacity measured at the ground for a given axle system consisting of the axle, springs, wheels, and tires. May also be influenced by the frame capacity. GAWR is determined by the least rated component in the system. **Gross Vehicle Weight (GVW)** The in-service vehicle weight, including chassis, body, add-on equipment, and cargo. **Gross Vehicle Weight Rating (GVWR)** The manufacturer's maximum rated GVW for any given vehicle. GVWR is frequently the sum of the GAWRs. However, it may be downrated for braking or handling considerations. **Payload Weight** The actual weight of the cargo carried by a vehicle. **Tare Weight** The weight of a truck fully equipped and ready for service, minus any payload. Also called curb weight or empty weight. All trucks begin with a tare weight for the standard chassis, to which weights are added for optional equipment, fuel, body and equipment, plus driver and passengers. Notes

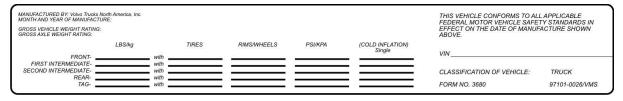
General Guidelines

Certification Label

The "Certification Label" must be part of the vehicle at all times. It shows the vehicle's serial number, the gross vehicle weight rating (GVWR), and the front and rear gross axle weight ratings (GAWR).

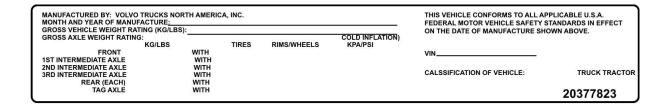
Gross vehicle weight (GVW) is the weight of the original equipped vehicle and all items added to it after it has left the factory. This includes bodies, winches, booms, the driver and all occupants, plus the load the vehicle is carrying. The GVW must not exceed the total of the front and rear axle weight ratings.

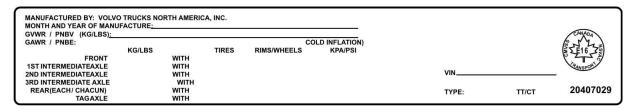
The vehicle certification label also shows the tire size and recommended tire inflation pressures for the tires originally supplied with the vehicle. The tires on the vehicle must be of the proper size and must be properly inflated for the load being carried.


Incomplete Vehicle Document

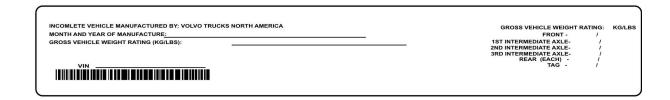
The "Incomplete Vehicle Document" is issued with a temporary certification label, in place of the final certification label, when the vehicle is sent to a body builder for completion.

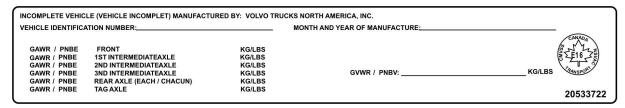
If several manufacturers are involved in the process of completing the vehicle, each manufacturer must issue a temporary certification label that shows to what legal standard the vehicle currently conforms.


The final manufacturer must issue the permanent certification label certifying that the vehicle conforms to FMVSS standards (as required by 49 CFR Part 567) that are in effect at the time of final manufacture of the incomplete vehicle.


If the vehicle is altered from its original build specifications, the certification label must be updated to reflect the changes (also see Service Bulletin, "Electrical Guidelines", "Brake Modification Guidelines", page 6, "Air-braked Vehicles", page 6, and "Air-operated Accessories", page 7).

W0117794


Fig. 1 Typical Vehicle Certification Label (USA)



W0117795

Fig. 2 Typical Complete Vehicle Label

W0117796

Fig. 3 Typical Incomplete Vehicle Label

Center of Gravity

The vertical center of gravity of the completed vehicle has a direct effect on the vehicle's stopping distance capability. As the vertical center of gravity increases or the wheelbase decreases, additional weight is transferred to the front axle during a stop, adversely affecting the stopping distance.

VTNA requires that trucks built shall have a center of gravity height/wheelbase ratio of 0.50 or less when loaded to a weight not exceeding GVWR* distributed proportionately to, but not exceeding GWVR,* and a center of gravity height not exceeding 1778 mm (70 in.) on single rear axle vehicle or 1905 mm (75 in.) on tandem rear axle vehicles.

As a guide, the vertical center of gravity height of the incomplete vehicle, as manufactured by VTNA, may be assumed to be the distance from the ground to the top of the frame side rail measured at the longitudinal midpoint of the vehicle in the unladen condition for single axle vehicles and laden condition for tandem axle vehicles.

The frame rail height may be calculated from the chassis diagrams in this document. Also, if you are measuring an unloaded chassis, you may assume the loaded frame rail height to be approximately two inches lower than the bare chassis.

Vehicles completed as trucks could require a vertical center of gravity lower than the recommendations above based on the stability considerations of certain vocational body and/or usage situations. The above recommendations consider only vehicle brake performance. If higher vertical center-of-gravity limitations are required for a specific vocational body or application, contact VTNA or submit all chassis specifications along with body and payload information in a request for advice to: Product Information Dept./Sales Engineering.

*GVWR and GAWR are indicated on the cover of the Incomplete Vehicle Document.

Vehicle GVWR and GAWRs

The representation as to conformity of the complete vehicle to FMVSS-121 provided in the Incomplete Vehicle Document has a condition that the GVWR and the GAWR of the completed vehicle shall be identical to the ratings designated on the front cover of the Incomplete Vehicle Document for the vehicle. The brake system on each incomplete vehicle manufactured by Volvo Trucks North America (VTNA) is designed to comply with FMVSS-121 when loaded to a specific completed vehicle GVWR distributed proportionate to specific GAWR. Revised vehicle GVWR or GAWR, or the addition of axles to the vehicle will change loading conditions and can adversely affect compliance to FMVSS-121.

Brake Modification Guidelines

Final stage manufacturers should note that in order to rely on the representations as to conformity to "FMVSS-121, Brake Systems" (as provided in the "Incomplete Vehicle Document" which accompanies each Volvo incomplete vehicle), each of the conditions and instructions of applicable FMVSS-121 statements in the Incomplete Vehicle Document must be followed.

If the final stage manufacturer chooses not to follow each of these instructions and conditions listed in the Incomplete Vehicle Document, he must assume full responsibility for conformity of the vehicle to FMVSS-121.

Final stage manufacturers should also note that instructions provided are for the assistance of final stage manufacturers who choose to certify the completed vehicle to FMVSS-121 independently of and without reliance on the conformity representations provided in the Incomplete Vehicle Document.

Air-braked Vehicles

DANGER

Pneumatic components store compressed air and can separate violently during disassembly or removal. Before servicing any part of the pneumatic (air) system, completely release the air pressure. Failure to do so can result in serious personal injury or death.

Volvo air-brake equipped incomplete vehicle products, to the extent completed, comply with Federal Motor Vehicle Safety Standard 121, Air Brake Systems (specific completed vehicles exempt from the Standard or portions of the Standard are discussed below).

At the time of writing, FMVSS-121 is applicable to all current production air-brake equipped trucks with specific exceptions.

The statements contained in this section regarding FMVSS-121 compliance are accurate at the time of printing. However, these statements are not intended to replace the statements regarding FMVSS-121 in the Incomplete Vehicle Document. Therefore, that manual should be consulted for compliance conditions.

The following are components and characteristics of the completed vehicle which are critical to overall performance of air-braked vehicles. These items should be carefully considered in ordering a vehicle as well as planning vehicle completion by subsequent stage manufacturers to ensure compliance (final certification) of the completed vehicle to FMVSS-121 as well as completed vehicle integrity.

Air-operated Accessories

FMVSS-121 has a pressure build-up requirement which states that the system pressure must build up from 586 to 689 kPa (85 to 100 PSI) in a specific time period under certain conditions. Therefore, the addition of any accessory or its associated plumbing which increases the volume of air subject to the build-up requirement will increase the build-up time and may affect compliance with FMVSS-121.

The representation as to conformity of the completed vehicle to FMVSS-121 provided in the Incomplete Vehicle Document has the following conditions for air operated accessories and its associated plumbing added to a vehicle by a subsequent stage manufacturer.

\bigwedge

DANGER

Pneumatic components store compressed air and can separate violently during disassembly or removal. Before removing or replacing any part of the pneumatic (air) system, completely release the air pressure. Failure to do so can result in serious personal injury or death.

- No connections are made into (1) the air line tubing or fittings for the parking brake system; (2) the rear axle system
 (modulated spring brake system); (3) the air supply and signal lines to the rear chassis relay valve(s); or (4) the air delivery
 lines to the front axle brakes and quick release valve.
- No connections are made between the check valve and the reservoir port for air supply.
- Additional reservoir volume must be added with pusher and tag axles, Jifflox, etc. Added volume must be equal to 12 times the added brake chambers rated volume.
- Each added reservoir shall be capable of withstanding an internal hydrostatic pressure of five times the compressor cutout pressure — or 3,447 kPa (500 psi), whichever is greater — for 10 minutes.

Air for pneumatic accessories should be sourced directly from an air reservoir. If an unused reservoir tap is not available, fittings added to the system at the reservoir must not restrict air flow to any existing air lines. The following are to be observed when adding air accessories.

Electronic Control Units (ECUs)

Date 7.2017

ECUs are connected through the Databus. These ECUs consist of sophisticated electronics that can be permanently damaged if not treated properly (such as exposure to high temperatures).

To prevent serious damage to ECUs, please follow these important guidelines:

CAUTION

Possible damage to electronic components. Turn the vehicle ignition switch OFF before disconnecting or connecting any electrical components. Failure to de-energize circuits may result in electronic equipment damage.

Welding

Welding anywhere on the truck chassis requires that certain precautionary measures be taken. This is required to prevent damage to electrical, as well as electronic systems, wiring harness and components.

CAUTION

Welding on trucks can permanently damage the vehicle electrical system/components, due to the voltage and current spikes that normally occur when welding. It is preferable to avoid welding; however, if welding must be done on any structure on or in contact with the vehicle, disconnect the electrical connectors at the rear of the instrument cluster and follow the recommendations below:

Before welding on the vehicle:

- 1 Disconnect the power to the vehicle.
- 2 Disconnect both the positive (+) and negative (-) battery cables. Disconnect the negative cable first. (When reconnecting, connect the positive cable first.)

Note: Disconnect the other ECU grounds from the battery before disconnecting the main ground (to avoid damage to the ECUs).

- 3 Disconnect the engine/starter ground from the chassis.
- 4 Disconnect the power harness and vehicle interface harness at the Engine Electronic Control Unit (EECU).
- 5 Disconnect all electronically controlled modules and devices, including:
 - Governor Controls
 - Shutdown/Warning Electronics
 - Starter and Ignition Controls
 - Engine and Vehicle ECUs
 - Transmission ECU
 - Anti-lock Brake (ABS) ECU
 - Chassis ECU
 - Electronic Speedometer/Tachometer

(This prevents the possibility of alternate paths for induced voltage and currents being created and damaging those components.)

6 Disconnect the electrical connectors at the rear of the instrument cluster.

Date 7.2017

- 7 Attach the welder ground cable as close as possible to the weld (no more than 60 cm (24 in.) from the part being welded).
- 8 Do not connect the welder ground cable to the engine ECU or the ECU cooling plate.

CAUTION

DO NOT WELD on the engine or engine components. Welding on the engine or components mounted on the engine can cause serious damage to the Engine ECU and other electrical components.

There are certain basic common sense rules also to be followed when welding, including (but not limited to):

- Welding cables should not be allowed to lie on/near or cross over any electrical wiring or electronic component during the welding procedure.
- After the welding process has been completed and the welded parts have cooled, inspect wiring and components for possible shorts or damage which would allow the possibility of drawing excessive currents or cause short circuits when the batteries are reconnected.

DANGER

Before working on a vehicle, set the parking brakes, place the transmission in neutral, and block the wheels. Failure to do so can result in unexpected vehicle movement and can cause serious personal injury or death.

WARNING

Fuel leaked or spilled onto hot surfaces or electrical components can cause a fire. Clean up fuel spills immediately.

DANGER

Exhaust gases contain deadly poison. When testing a vehicle with the engine running, conduct the test outdoors or use a properly vented exhaust hose.

WARNING

Keep yourself and your test equipment clear of all moving or hot engine parts. A hot engine can cause serious burns or can permanently damage test equipment.

DANGER

Pneumatic components store compressed air and can separate violently during disassembly or removal. Before servicing any part of the pneumatic (air) system, completely release the air pressure. Failure to do so can result in serious personal injury or death.

Battery Charging and Jump Starting

Jump Starting

It is preferable NOT to jump start vehicles which are electronically controlled. The electronic control units can be damaged by voltage spikes and current surges created by jump starting.

When jump starting, use only extra batteries from another truck or from a battery tray. The nominal voltage of the extra batteries must not exceed the system voltage of the truck (i.e. 12 V).

DO NOT connect the extra batteries in series with the truck batteries.

CAUTION

Do not connect battery charging or jump starting cables to any part of an engine electronic system. This can damage sensitive electrical devices.

CAUTION

DO NOT use a "Hot Shot" type starting cart or a battery charger, as most use extremely high voltages. Use of a "Hot Shot" device or battery charger to jump-start the vehicle will seriously damage the ECUs and other electronic equipment.

DANGER

DO NOT use ether when starting an engine with electric or "flame start" intake air heater. Use of ether can cause an explosion and can seriously damage the engine and components and cause serious personal injury or death.

Battery Charging

Before charging, remove the battery box fuse for the Engine Electronic Control Unit (EECU) and Vehicle Electronic Control Unit (VECU). Next, remove any ECU power supply wires that are directly connected to the batteries. This will ensure that these components will not be affected by any transient voltages that may occur during charging.

This precaution is necessary due to the extensive variety of manufacturers of battery charging devices and the wide variance in outputs from these devices.

When charging batteries, ALWAYS disconnect the battery cables and charge each battery separately. This will prevent the voltage coming into the battery from damaging other system circuits.

Adding Electrical Equipment

Carefully determine the proper wire sizing and fuse requirements for each circuit to be added. Relays may be required for circuits with higher current flow.

Wire connections must not disturb or interfere with any existing system(s) or component(s) within the vehicle.

For example, the 400-409 wires MUST NOT be cut or spliced for any connections. **These wires must not be tampered with**.

Data Link Wiring

J1708/J1587 Information Link

If a connection is required to the J1708/J1587 Information Link (i.e. for the Road Relay), use the connector already supplied in the vehicle harness. This circuit is identified by wires 400 and 401; these will always be a twisted pair of black wires.

Note: Wires 400 and 401 are used for the transmission of data for diagnostic messages and gauges. Modifying this circuit can cause these functions to fail.

If a circuit being added will carry high currents or frequencies, route it in a location AWAY from wires 400 and 401 to prevent mutual inductance from interfering with Data Link functions.

J1939/J1922 Control Link

Note: Vehicles with Volvo engines use the J1939 Control Link.

Follow the same guidelines and precautions for the J1939/J1922 Control Link wiring.

No connections may be made to wires 406 (yellow), 407 (green), and 408 (shield). These circuits are used for control of the vehicle. Accelerator pedal, engine brake, and traction control are examples of functions controlled by these circuits.

Note: Wires 406 and 407 carry the high-speed communications between the electronic systems in the vehicle. Wire 408 is an uninsulated wire that wraps around 406 and 407. It absorbs RFI that is produced from the communication circuits 406 and 407.

A "terminating resistor" is wired into the Data Link at the end of the Data Link harness. This has a resistance of 120 Ω and must remain connected for the systems to function properly.

For Volvo engines, a similar terminating resistor is designed into the Engine Electronic Control Unit (EECU) and defines the other end of the Data Link. For non-Volvo engines, the second terminating resistor is external to the EECU.

Note: These two resistors are in parallel, so the total resistance value measured across the Data Link should be 60Ω .

CAUTION

Do not modify or make connections to wires 406 (yellow), 407 (green), or 408 (shield). Any modifications, connections, or damage to these wires can result in the failure of the vehicle's electronic systems.

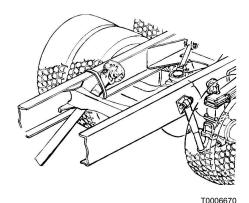
Notes			

Towing Procedure

General

CAUTION

The driveshaft must be removed before towing the vehicle. Failure to remove the driveshaft may result in damage to the transmission.


Remove the driveshaft from the rear axle before moving the vehicle. When the transmission is driven from the rear wheels without the engine running, there is no lubrication in the transmission.

Axle shafts must be removed if the vehicle is to be towed at speeds over 40 km/h (25 mph) or for a long distance. Openings should be covered to prevent loss of oil and entry of dirt and grit. Where oil-lubricated bearings are used, openings should be thoroughly sealed with metal discs and new gaskets before towing.

WARNING

If a vehicle with air suspension is lifted by the rear frame member, there is a risk that the air springs will separate from the spring plates. When towing has been completed, never use your hands to reposition the air springs. There is a great risk that your hand will be caught between spring and plate causing personal injury.

WARNING

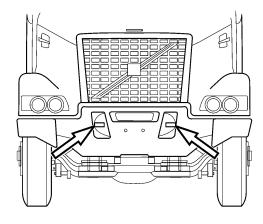
Do not tow a vehicle backwards when equipped with roof air fairings. The fairings act as an air scoop and may break off. Failure to follow this warning may lead vehicle damage and personal injury.

WARNING

Vehicles with air fairings or large superstructures are tall. Make sure that the total height of the vehicle, when it is raised up behind the wrecker, does not exceed the maximum allowed height for local underpasses. Failure to follow this instruction may lead to vehicle damage and personal injury.

The vehicle may now be towed. It is recommended that a wrecker with a lift bar is used since the service brakes will not function. The system must be filled with air to release the parking brake.

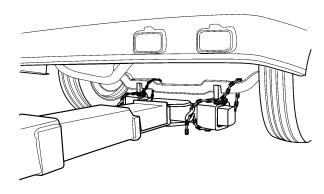
Note: The power steering does not function when towing a vehicle with a disabled engine.


Towing Instructions

CAUTION

If the vehicle becomes disabled, it is very important to tow it properly. Failure to do so can cause damage to the frame and body parts. Follow the instructions below to avoid damage.

In the event that the vehicle is not accessible to place the wrecker lift bar under the front axle, use the tow hooks in the front of the vehicle. The front tow hooks are used as a point at the front of the vehicle where the vehicle can be pulled.



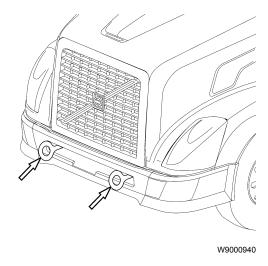
W9000939

When the vehicle is situated properly, lift the front and position the lift bar under the front axle and secure. Using the front axle for towing minimizes the risk of damage to the vehicle body, frame, and suspension.

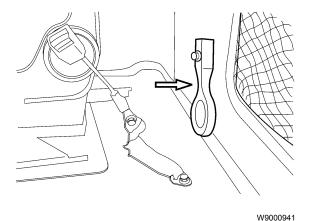
If necessary, the driveshaft and axle shaft can be removed for towing.

Note: When the driveshaft or axle shafts are reinstalled, make sure the nuts are tightened to the correct torques. Also make sure the axle shafts are installed in the proper sides, with the left shaft in the left side and the right shaft in the right side.

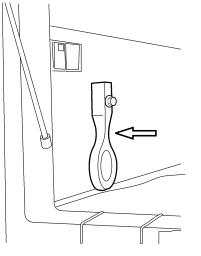
W1000227


CAUTION

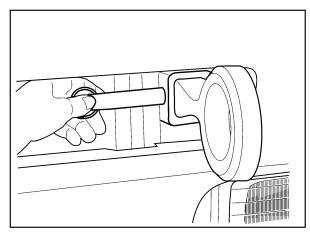
If the vehicle becomes disabled, it is very important to tow it properly. Failure to do so can cause damage to the frame and body parts. Follow the instructions below to avoid damage.


⚠

DANGER


Do not use the tow eyes for raising the front of the vehicle; the tow eyes can break. Do not crawl under a vehicle suspended by tow eyes. Failure to follow these instructions can result in serious personal injury or death.

On day cab models, the tow eyes are stored bolted to the back of the cab wall.



On sleeper cab models, the tow eyes are stored bolted to the back wall of the luggage compartment wall.

W9000942

The tow eyes are held in place when mounted on the front of the vehicle by tractor pins. These pins are stored in the tow eye mounting holes when not being used.

W9000943

The vehicle may now be towed. It is recommended that a wrecker with a lift bar is used since the service brakes will not function. The system must be filled with air to release the parking brake.

Note: The power steering does not function when towing a vehicle with a disabled engine.

CAUTION

It is recommended that the front bumper be removed when lifting with the front tow eyes/hooks. Failure to remove the front bumper can cause possible component damage.

Acceptable loads per hook:

- Straight pull: Less than or equal to 18,143 kg/hook (40,000 lb).
- Vertical pull: Less than or equal to 5170 kg/hook (11,400 lb).
- 45° cone (combination loads): Less than or equal to 7239 kg (15,960 lb).

Towing a Vehicle Equipped with an I-Shift Transmission

CAUTION

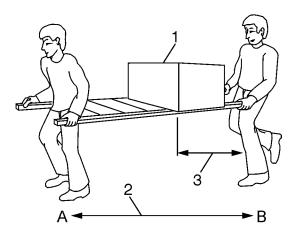
You must tow a vehicle equipped with an I-Shift transmission according to the guidelines below. Failure to do so can result in damage to transmission components.

When towing the vehicle, the output shaft of the transmission must not be allowed to spin or turn. If the vehicle is towed with the drive wheels still in contact with the road surface, the vehicle axle shafts or driveline must be removed or disconnected.

Notes		

Design and Function

Weight Distribution


Determining the weight distribution of a truck is an important calculation. It can indicate whether a truck is legally loaded, and can show whether any dangerous overloading might occur.

Weight distribution calculations are not difficult to perform; an understanding of the theory involved will make it easier to perform the calculations and correctly analyze each application.

Theory

The theory of weight distribution can be illustrated as follows:

Two men are painting a house. To get all of the material to the job in one trip, they put the paint and brushes in a box, set it on a ladder, and each pick up an end.

W9000362

Fig. 4 Weight Distribution Theory

- 1 Load
- 2 Total length
- 3 Distance from center of load to "B"

Date 7.2017

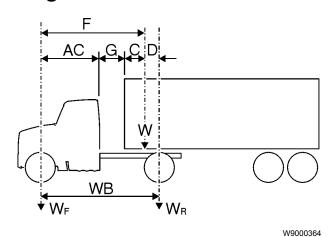
The ladder is 10 feet long. The box of supplies weighs 50 lb. The center of the box is located 3 feet from the man at position B. Intuitively, we know that man "B" is carrying more of the load because he is closer to it than man "A." The amount of weight being carried by man "A" can be determined using the following formula:

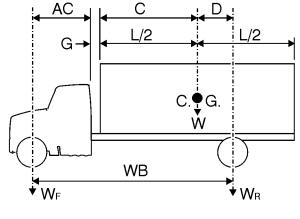
Weight at man "A" = 15 lb.

The weight carried by man "B" is obtained by subtracting the weight at man "A" from the total weight.

Weight at man "B" = Total weight – weight at man "A"

Weight at man "B" = 50 lb - 15 lb


Weight at man "B" = 35 lb


The percentage of weight transferred to each man can also be calculated.

% of weight at man "A" = 3/10 x 100% = 30%

The percentage of weight transferred to man "B" is found by subtracting the % weight at man "A" from 100%: 100% - 30% = 70%.

Weight Distribution Formulas

W9000365

AC Front axle to back-of-cab

G Gap between cab and body or trailer

CG Center of gravity of body and payload

C Front of body to CG, or front of trailer to kingpin

D Distance CG or fifth wheel is ahead of rear axle

F Distance CG or fifth wheel is behind front axle

Date 7.2017

L Body length

WB Wheelbase

W Weight of body plus payload, or kingpin load

W_F Portion of W transferred to front axle

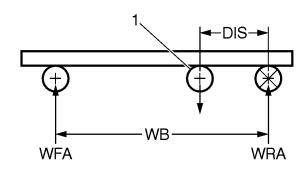
W_R Portion of W transferred to rear axle

	Basic Formulas		
а	$W \times D = W_F \times WB$	or	
b	WB = F + D = AC + G + C + D		
С	$W = W_F + W_R$		
ما	Described When of and to from tour	D	w 100
d	Percent of W transferred to front axle =	WB	x 100
_	Described When the second second	F	100
е	Percent of W transferred to rear axle =	WB	x 100

Sample Calculations					
\\\ -	WxD		\\\ -	WxF	
W _F = —	WB	-	W _R = -	WB	
or					
$W_R =$	$W-W_{F}$		W_F	$W - W_R$	

Weight Distribution Formulas (Text Descriptions)

Weight transferred to Front Axle =	(Total Weight) x (Distance CG is ahead of Rear Axle)
weight transferred to Front Axie – — —	Wheelbase)
Distance CC must be placed about of Pear Ayle -	(Weight transferred to Front Axle) x (Wheelbase)
Distance CG must be placed ahead of Rear Axle =	(Total Weight)
Wheelbook -	(Total Weight) x (Distance CG is ahead of Rear Axle)
Wheelbase =	(Weight to be transferred to Front Axle)
Total Weight =	(Weight to be transferred to Front Axle) x (Wheelbase)
Total Weight –	(Distance CG is ahead of Rear Axle)
Weight transferred to Rear Axle =	(Total Weight) x (Distance CG is behind Front Axle)
Weight transferred to Real Axie – — —	(Wheelbase)
Distance CG must be placed behind Front Axle =	(Weight transferred to Rear Axle) x (Wheelbase)
Distance CG must be placed benind Front Axie =	(Total Weight)
Wheelbook -	(Total Weight) x (Distance CG is behind Rear Axle)
Wheelbase =	(Wheelbase)
Total Woight -	(Weight to be transferred to Rear Axle) x (Wheelbase)
Total Weight = —	(Distance CG is behind Front Axle)


Note: Total Weight must always equal Weight transferred to Rear Axle plus Weight transferred to Front Axle.

Body Builder, General Guidelines and Certification

Formulas for Lift Axles

Pusher Axles

Pusher Up				
WFA =	DIS	x Pusher Tare Weight		
VVFA -	WB	X i usher fare weight		
WRA =	Tare Weight - WFA			
Pusher Down				
WFA =	– (DIS)	x Pusher Pressure		
WFA -	WB	X Fusilei Flessule		
WRA =	- (WB - DIS)	x Pusher Pressure		
WRA -	WB	X Fusilei Flessule		

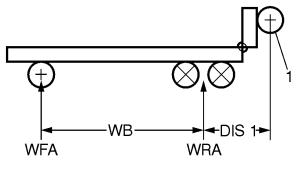

W9000387

Fig. 5 Pusher Axle

Notes			

Tag Axles

	Tag Up	
WRA =	WB + DIS)	x Tare Weight
WIVA -	WB	A faic Weight
WFA =	Tare Weight - WFA (will be Negative Number)	
	Tag Down	
WRA =	- (WB + DIS)	x Tag Pressure (Negative Pressure)
WIVA -	WB	x rag i ressure (Negative i ressure)
WFA =	DIS	x Tag Pressure (Positive Number)
WI A -	WB	A rag (recease (receive realises)

W9000389

Fig. 6 Tag Axle

Notes			

	Boost Up	
WRA =	(WB + DIS#1)	x Tare Weight
WIVA -	WB	X falo Wolgh
WFA =	Tare Weight - WFA (will be Negative Number)	
	Boost Down	
WRA =	- (WB + DIS#2)	x Boost Axle Pressure (Negative
WIXA -	WB	Number)
WFA =	(DIS#2)	x Boost Axle Pressure (Positive
WI A -	WB	Number

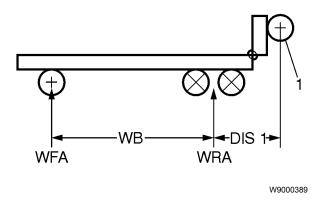
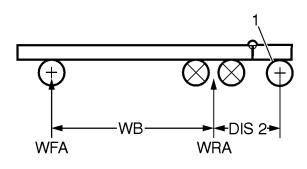



Fig. 7 Boost Axle

W9000390

Customer Information Worksheet

CUSTOMER	BRANCH OR DEALER	!	DATE
ADDRESS	QUANTITY	MODEL	ORDER NO.

	STRA	AIGHT TRUCKS	
Body Make:_	Model:		Length:
Body Type:	[] Dump [] Flat [] Van Specialty [] Rear Refuse Loader [] Front F		
Body Weight:	lb	Center of Gravity Loc	ation:
Additional Equipment:	[] Snow Plow [] Tailgate		
Equipment Weight:	lb	Center of Gravity Loc	ation*:
- 2	BL 3 A A B A A A A A A A A A A A A A A A A	Body Height: *Center of Gravity Body (B Payload (A) Overhang Required	1
	W9000385		

ALL TRUCKS

Commodity Hauled:		Payload Weight :	lb
Operating	[] Increasing Loads[] Decreasing Loa	ads	
Conditions:	[] One Way	Fully Loaded	
	Average Trip:miles	Number Round-trips Per Day:	
	Average Number of Stops:	Average Idling Time:	
Road Surface/	[] Concrete [] Asphalt [] Pac	sked Dirt[] Gravel	
Grades:	[] Sand [] Mud [] Loose	Dirt	
	Maximum Starting Grade%	Maximum Highway Grade	%
Speed:	Cruise Speed Desired on Highwaymph	Top Speed (Unloaded)	mph
Operating Area:	[] Interstate	[] Other Roads	
	States Operating		
	Length Restrictions		
Climate:	Outside High Temp	Low Altitude	ft
Weight Limits:	Frontlb Rearlb	Tag/Pusherlb	
	Totallb GVW/GCW Requested	1lb	
Other Restrictions / Conditions			

TRACTORS

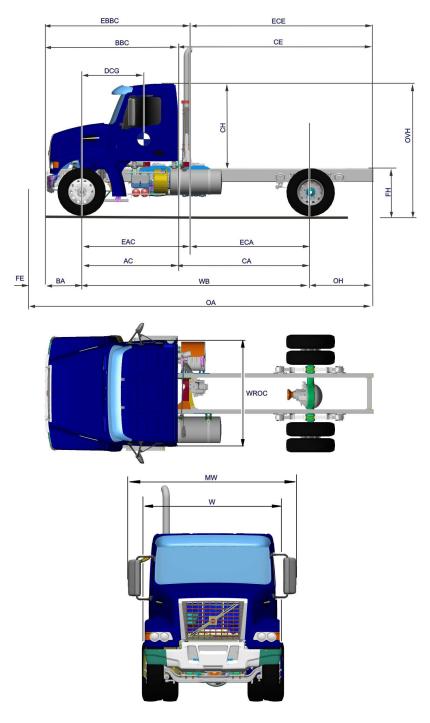
Type of Service:	[] Tractor Semi/Trailer [] Tractor Double Trailers [] Tractor Triple Trailers					
	[] Straight Truck/PUP Tra	iler				
Trailer:		Model frigerated [] Flatbe		[] Dump		
		[] Gallons [] Ci Widthin.				
	Kingpin Location Rear Trailer Axles		Landing Gear Location	in. (front)		
B	TL	+1) + (+) + (+) + (-) 3	Trailer Height Overall Height Trailer Axle Setting Trailer Axle Spacing	12 34		

Notes			

W9000386

Conversion Factors

Convert From:		То:	Multiply By	
	_	Area		
Square Inch	in²	Square millimeter	mm²	645.16
Square foot	ft²	Square meter	m²	0.0929
Square millimeter	mm²	Square Inch	in²	0.0016
Square meter	m²	Square foot	ft²	10.7643
	Flo	ow (Volume Per Unit Time)	L	
Gallon (U.S.) per minute	gpm	Cubic meter per second	m³/s	0.00006
Gallon (U.S.) per minute	gpm	Liter per minute	L/min	3.7854
Cubic meter per second	m³/s	Gallon (U.S.) per minute	gpm	15850.3
Liter per minute	L/min	Gallon (U.S.) per minute	gpm	0.26417
		Length		
Inch	in.	Millimeter	mm	25.4
Foot	ft	Meter	m	0.3048
Yard	yd	Meter	m	0.09144
Millimeter	mm	Inch	in	0.0394
Meter	m	Foot	ft	3.2808
Meter	m	Yard	yd	1.0936
		Mass		
Pound	lb	Kilogram	kg	0.4536
Ton (U.S.)		Ton (metric, 2,204.6 lbs)		0.9072
Kilogram	kg	Pound	lb	2.2046
Ton (metric)		Ton (U.S.)		1.1023
		Power		
Horsepower (550 ft-lb f/sec)	hp	Kilowatt	kW	0.7457
Kilowatt	kW	Horsepower (550 ft-lb f/sec)	hp	1.3910
		Pressure		
Pound-Force per square inch	psi	Kilopascal	kPa	6.8948
Kilopascal	kPa	Pound-Force per square inch	psi	0.145
		Temperature		
Degree Fahrenheit	°F	Degree Celsius	°C	5/9 (°F - 32
Degree Celsius	°C	Degree Fahrenheit	°F	(9/5 °C) + 3
		Velocity		
Miles per hour (U.S.)	mph	Kilometer per hour	km/h	1.6093
Kilometer per hour	km/h	Miles per hour (U.S.)	mph	0.6214

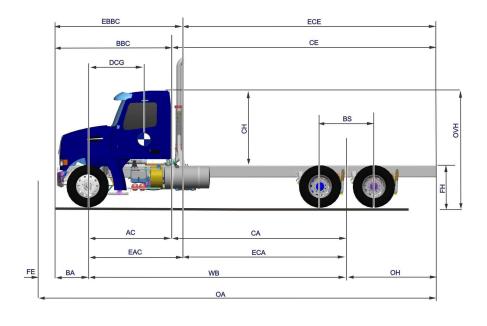

Convert From:	Convert From:		То:			
	Volume					
Cubic inch	in³	Cubic millimeter	mm³	16387.06		
Cubic inch	in³	Cubic centimeter	cm³	16.3871		
Cubic foot	ft³	Cubic meter	m³	0.0283		
Cubic yard	yd³	Cubic meter	m³	0.7646		
Quart (U.S. liquid)	qt	Liter	L	0.9464		
Gallon (U.S. liquid)	gal	Liter	L	3.7854		
Liter	L	Quart (U.S. liquid)	qt	1.0566		
Liter	L	Gallon (U.S. liquid)	gal	0.2642		
Gallon (U.S. liquid)	gal	Cubic meter	m³	0.0038		
Cubic millimeter	mm³	Cubic inch	in³	0.00006		
Cubic centimeter	cm³	Cubic inch	in³	0.061		
Cubic meter	m³	Cubic foot	ft³	35.3357		
Cubic meter	m³	Cubic yard	yd³	1.3079		
Cubic meter	m³	Gallon (U.S. liquid)	gal	263.1579		

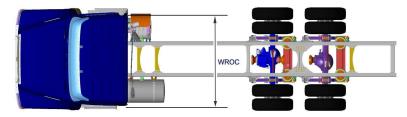
Notes			

Chassis Diagrams

Chassis Diagrams, VHD

VHD 200, Truck, Axle Forward, 4 x 2


W9031950


Fig. 8 VHD 200, Truck, Axle Forward, 4 x 2

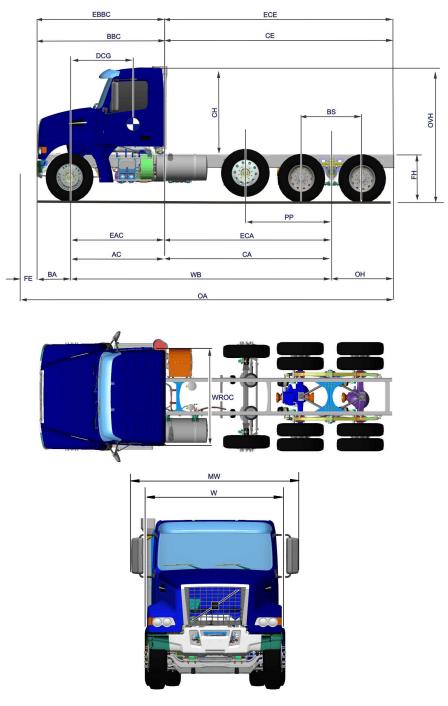

See Fig. 8			
	[Dimensions	
Description	Drawing Reference	Dimension	
Front Frame Extension	FE	0 in (0 mm)	
Bumper to Front Axle	ВА	29.10 in (739 mm)	
Wheelbase	WB	199 in (5055 mm)	
Overhang	ОН	84 in (2134 mm)	
Overall Length	OA	312.10 in (7927 mm)	
Bumper to Back of Cab	BBC	113.60 in (2885 mm)	
Effective Bumper to Back of Cab	EBBC	See table below.	
Cab to Rear Axle	CA	114.50 (2908 mm)	
Effective Cab to Rear Axle	ECA	See table below.	
Front Axle to Back of Cab	AC	84.50 in (2146 mm)	
Effective Front Axle to Back of Cab	EAC	See table below.	
Cab to End of Frame	CE	198.50 in (5042 mm)	
Effective Cab to End of Frame	ECE	See table below.	
Unladen Frame Height	FH	43.49 in (1105 mm)	
Cab Height	СН	74.30 in (1887 mm)	
Overall Height	OVH	117.55 in (2986 mm)	
Driver CG	DCG	64.50 in (1638 mm)	
Width of Rear of Cab	WROC	89 in (2261 mm)	
Mirror Width	MW	117.45 in (2983 mm)	
Cab Width	W	95 in (2413 mm)	

	EAC	ECA	EBBC	ECE
Single Stack	97.95 in (2488 mm)	101.05 in (2567 mm)	127.05 in (3227 mm)	185.05 in (4700 mm)
Dual Stack	101.81 in (2586 mm)	97.19 in (2469 mm)	130.91 in (3325 mm)	181.19 in (4602 mm)
Vertical SCR	106.06 in (2694 mm)	92.94 in (2361 mm)	135.16 in (3433 mm)	176.94 in (4494 mm)

VHD 200, Truck, Axle Forward, 6 x 4

W9034070

Fig. 9 VHD 200, Truck, Axle Forward, 6 x 4

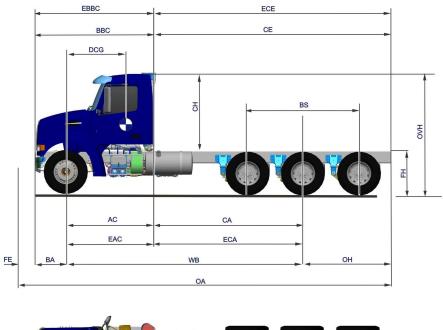

See Fig. 9			
	[Dimensions	
Description	Drawing Reference	Dimension	
Front Frame Extension	FE	0 in (0 mm)	
Bumper to Front Axle	BA	29.10 in (739 mm)	
Wheelbase	WB	232 in (5893 mm)	
Overhang	OVH	55 in (1397 mm)	
Overall Length	OA	316.10 in (8029 mm)	
Bumper to Back of Cab	BBC	113.60 in (2885 mm)	
Effective Bumper to Back of Cab	EBBC	See table below.	
Cab to Rear Axle	CA	147.50 in (3747 mm)	
Effective Cab to Rear Axle	ECA	See table below.	
Cab to Rear of Axle	AC	84.50 in (2146 mm)	
Effective Front Axle to Back of Cab	EAC	See table below.	
Cab to End of Frame	CE	202.50 in (5144 mm)	
Effective Cab to End of Frame	ECE	See table below.	
Unladen Frame Height	FH	42.31 in (1075 mm)	
Cab Height	СН	74.30 in (1887 mm)	
Overall Height	OVH	116.61 in (2962 mm)	
Driver CG	DCG	64.50 in (1638 mm)	
Width of Rear of Cab	WROC	89 in (2261 mm)	
Mirror Width	MW	117.45 in (2983 mm)	
Cab Width	W	95 in (2413 mm)	

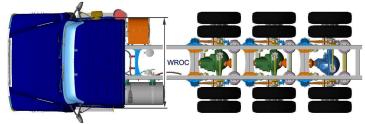
	EAC	ECA	EBBC	ECE
Single Stack	97.95 in (2488 mm)	134.05 in (3405 mm)	127.05 in (3227 mm)	189.05 in (4802 mm)
Dual Stack	101.81 in (2586 mm)	130.19 in (3307 mm)	130.91 in (3325 mm)	185.19 in (4704 mm)
Vertical SCR	106.06 in (2694 mm)	125.94 in (3199 mm)	135.16 in (3433 mm)	180.94 in (4596 mm)

Date 7.2017

All Rights Reserved

VHD 200, Truck, Axle Forward, 8 x 4


W9031949


Fig. 10 VHD 200, Truck, Axle Forward, 8 x 4

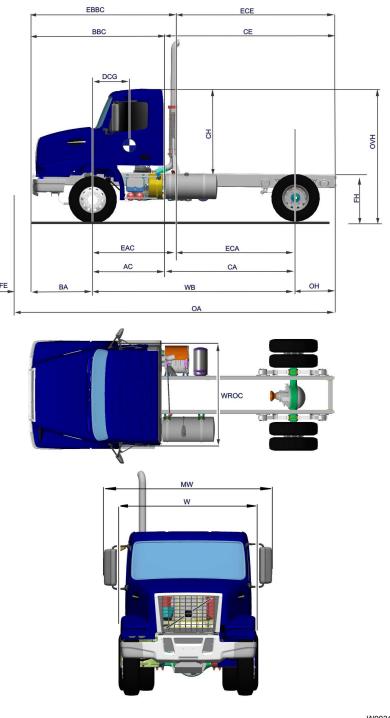
	See Fig. 10				
	[Dimensions			
Description	Drawing Reference	Dimension			
Front Frame Extension	FE	0 in (0 mm)			
Bumper to Front Axle	BA	29.10 in (739 mm)			
Wheelbase	WB	232 in (5893 mm)			
Overhang	ОН	55 in (1397 mm)			
Overall Length	OA	316.10 in (8029 mm)			
Bumper to Back of Cab	BBC	113.60 in (2885 mm)			
Effective Bumper to Back of Cab	EBBC	See table below.			
Cab to Rear Axle	CA	147.50 in (3747 mm)			
Effective Cab to Rear Axle	ECA	See table below.			
Front Axle to Back of Cab	AC	84.50 in (2146 mm)			
Effective Front Axle to Back of Cab	EAC	See table below.			
Cab to End of Frame	CE	202.50 in (5144 mm)			
Effective Cab to End of Frame	ECE	See table below.			
Bogie Spread	BS	54 in (1372 mm)			
Unladen Frame Height	FH	42.31 in (1075 mm)			
Cab Height	СН	74.30 in (1887 mm)			
Overall Height	OVH	116.61 in (2962 mm)			
Driver CG	DCG	64.50 in (1638 mm)			
Width of Rear of Cab	WROC	89 in (2261 mm)			
Mirror Width	MW	117.45 in (2983 mm)			
Cab Width	W	95 in (2413 mm)			
Pusher	PP	75 in (1905 mm)			

	EAC	ECA	EBBC	ECE
Single Stack	97.95 in (2488 mm)	134.05 in (3405 mm)	127.05 in (3227 mm)	189.05 in (4802 mm)
Dual Stack	101.81 in (2586 mm)	130.19 in (3307 mm)	130.91 in (3325 mm)	185.19 in (4704 mm)
Vertical SCR	106.06 in (2694 mm)	125.94 in (3199 mm)	135.16 in (3433 mm)	180.94 in (4596 mm)

VHD 200, Truck, Axle Forward, 8 x 6

W9034068

Fig. 11 VHD 200, Truck, Axle Forward, 8 x 6


Date 7.2017

All Rights Reserved

See Fig. 11					
Dimensions					
Description	Drawing Reference	Dimension (mm/in)			
Front Frame Extension	FE	0 in (0 mm)			
Bumper to Front Axle	BA	29.10 in (739 mm)			
Wheelbase	WB	230 in (5842 mm)			
Overhang	ОН	84 in (2134 mm)			
Overall Length	OA	343.10 in (8715 mm)			
Bumper to Back of Cab	BBC	113.60 in (2885 mm)			
Effective Bumper to Back of Cab	EBBC	See table below.			
Cab to Rear Axle	CA	137.50 in (3493 mm)			
Effective Cab to Rear Axle	ECA	See table below.			
Front Axle to Back of Cab	AC	84.50 in (2146 mm)			
Effective Front Axle to Back of Cab	EAC	See table below.			
Cab to End of Frame	CE	229.50 in (5829 mm)			
Effective Cab to End of Frame	ECE	See table below.			
Bogie Spread	BS	108 in (2743 mm)			
Unladen Frame Height	FH	42.31 in (1075 mm)			
Cab Height	СН	74.30 in (1887 mm)			
Overall Height	OVH	115.31 in (2929 mm)			
Driver CG	DCG	64.50 in (1638 mm)			
Width of Rear of Cab	WROC	89 in (2261 mm)			
Mirror Width	MW	117.45 in (2983 mm)			
Cab Width	W	95 in (2413 mm)			

	EAC	ECA	EBBC	ECE
Single Stack	97.95 in (2488 mm)	132.05 in (3354 mm)	127.05 in (3227 mm)	216.05 in (5488 mm)
Dual Stack	101.81 in (2586 mm)	128.19 in (3256 mm)	130.91 in (3325 mm)	212.19 in (5390 mm)
Vertical SCR	106.06 in (2694 mm)	123.94 in (3148 mm)	135.16 in (3433 mm)	207.94 in (5282 mm)

VHD 200, Truck, Axle Back, 4 x 2

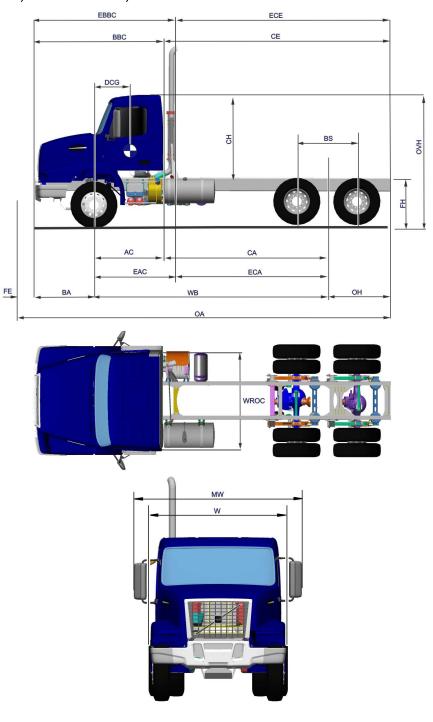

W9031954

Fig. 12 VHD 200, Truck, Axle Back, 4 x 2

See Fig. 12					
	Dimensions				
Description	Drawing Reference	Dimension			
Front Frame Extension	FE	0 in (0 mm)			
Bumper to Front Axle	BA	51.2 in (1300 mm)			
Wheelbase	WB	177 in (4496 mm)			
Overhang	ОН	84 in (2134 mm)			
Overall Length	OA	261 in (6629 mm)			
Bumper to Back of Cab	BBC	113.60 in (2885 mm)			
Effective Bumper to Back of Cab	EBBC	See table below.			
Cab to Rear Axle	CA	114.60 in (2911 mm)			
Effective Cab to Rear Axle	ECA	See table below.			
Axle to Back of Cab	AC	62.40 in (1585 mm)			
Effective Front Axle to Back of Cab	EAC	See table below.			
Cab to End of Frame	CE	198.60 in (5044 mm)			
Effective Cab to End of Frame	ECE	See table below.			
Unladen Frame Height	FH	43.25 in (1099 mm)			
Cab Height	СН	74.30 in (1887 mm)			
Overall Height	OVH	117.55 in (2985 mm)			
Driver CG	DCG	42 in (1067 mm)			
Width of Rear of Cab	WROC	89 in (2261 mm)			
Mirror Width	MW	116 in (2946 mm)			
Cab Width	W	95 in (2413 mm)			

	EAC	ECA	EBBC	ECE
Single Stack	75.90 in (1928 mm)	101.10 in (2568 mm)	127.10 in (3228 mm)	185.10 in (4702 mm)
Dual Stack	79.76 in (2026 mm)	97.24 in (2470 mm)	130.96 in (3326 mm)	183.24 in (4654 mm)
Vertical SCR	84.01 in (2134 mm)	92.99 in (2362 mm)	135.21 in (3434 mm)	176.99 in (4496 mm)

VHD 200, Truck, Axle Back, 6 x 4

W9033935

Fig. 13 VHD 200, Truck, Axle Back, 6 x 4

See Fig. 13					
	Dimensions				
Description	Drawing Reference	Dimension			
Front Frame Extension	FE	0 in (0 mm)			
Bumper to Front Axle	BA	51.2 in (1300 mm)			
Wheelbase	WB	208 in (5283 mm)			
Overhang	ОН	55 in (1397 mm)			
Overall Length	OA	314.20 in (7981 mm)			
Bumper to Back of Cab	BBC	113.60 in (2885 mm)			
Effective Bumper to Back of Cab	EBBC	See table below.			
Cab to Rear Axle	CA	145.60 in (3698 mm)			
Effective Cab to Rear Axle	ECA	See table below.			
Front Axle to Back of Cab	AC	62.40 in (1585 mm)			
Effective Front Axle to Back of Cab	EAC	See table below.			
Cab to End of Frame	CE	200.60 in (5095 mm)			
Effective Cab to End of Frame	ECE	See table below.			
Bogie Spread	BS	54 in (1372 mm)			
Unladen Frame Height	FH	42.31 in (1075 mm)			
Cab Height	СН	74.30 in (1887 mm)			
Overall Height	OVH	116.61 in (2962 mm)			
Driver CG	DCG	42 in (1067 mm)			
Width of Rear of Cab	WROC	89 in (2261 mm)			
Mirror Width	MW	117.45 in (2983 mm)			
Cab Width	W	95 in (2413 mm)			

	EAC	ECA	EBBC	ECE
Single Stack	75.90 in (1928 mm)	132.10 in (3355 mm)	127.10 in (3228 mm)	187.10 in (4752 mm)
Dual Stack	79.76 in (2026 mm)	128.24 in (3257 mm)	130.96 in (3326 mm)	183.24 in (4654 mm)
Vertical SCR	84.01 in (2134 mm)	123.99 in (3149 mm)	135.21 in (3434 mm)	178.99 in (4546 mm)

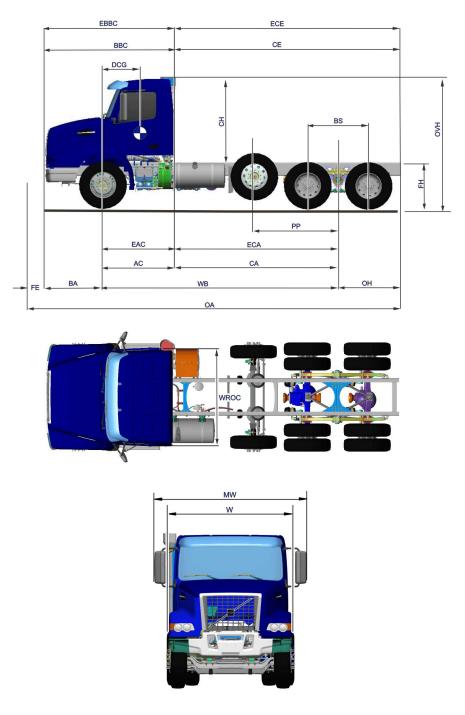
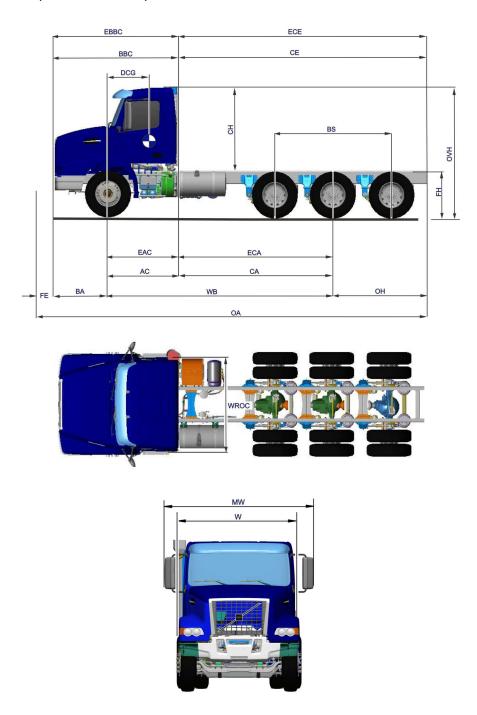
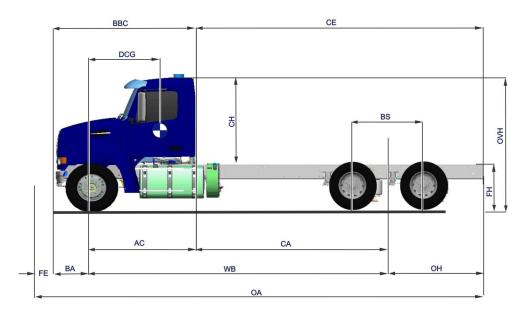


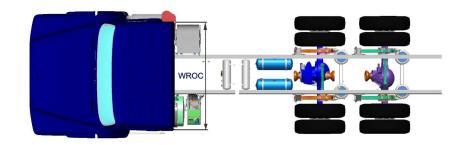
Fig. 14 VHD 200, Truck, Axle Back, 8 x 4

	See Fig. 14			
	[Dimensions		
Description	Drawing Reference	Dimension		
Front Frame Extension	FE	0 in (0 mm)		
Bumper to Front Axle	BA	51.2 in (1300 mm)		
Wheelbase	WB	208 in (5283 mm)		
Overhang	ОН	55 in (1397 mm)		
Overall Length	OA	277.20 in (7041 mm)		
Bumper to Back of Cab	BBC	113.60 in (2885 mm)		
Effective Bumper to Back of Cab	EBBC	See table below.		
Cab to Rear Axle	CA	145.60 in (3698 mm)		
Effective Cab to Rear Axle	ECA	See table below.		
Front Axle to Back of Cab	AC	62.40 (1585)		
Effective Front Axle to Back of Cab	EAC	See table below.		
Cab to End of Frame	CE	200.60 in (5095 mm)		
Effective Cab to End of Frame	ECE	See table below.		
Bogie Spread	BS	54 in (1372 mm)		
Unladen Frame Height	FH	42.31 in (1075 mm)		
Cab Height	СН	74.30 in (1887 mm)		
Overall Height	OVH	116.61 in (2962 mm)		
Driver CG	DCG	42 in (1067 mm)		
Width of Rear of Cab	WROC	89 in (2261 mm)		
Mirror Width	MW	117.45 in (2983 mm)		
Cab Width	W	95 in (2413 mm)		
Pusher	PP	75 in (1905 mm)		

	EAC	ECA	EBBC	ECE
Single Stack	75.90 in (1928 mm)	132.10 in (3355 mm)	127.10 in (3228 mm)	150.10 in (3813 mm)
Dual Stack	79.76 in (2026 mm)	128.24 in (3257)	130.96 in (3326 mm)	146.24 in (3715 mm)
Vertical SCR	84.01 in (2134 mm)	123.99 in (3149 mm)	135.21 in (3434 mm)	141.99 in (3607 mm)




Fig. 15 VHD 200, Truck, Axle Back, 8 x 6

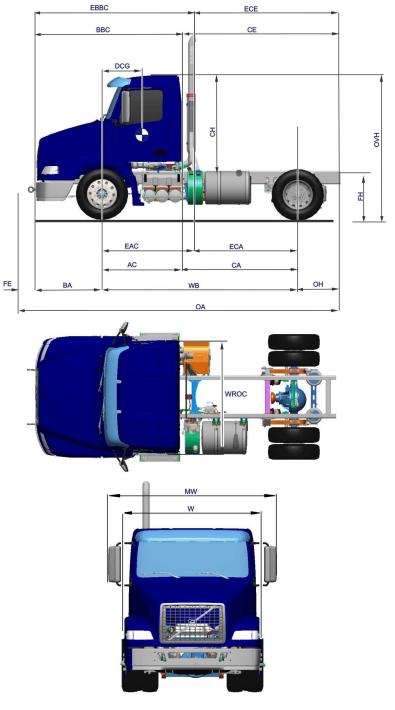

See Fig. 15			
	[Dimensions	
Description	Drawing Reference	Dimension	
Front Frame Extension	FE	0 in (0 mm)	
Bumper to Front Axle	BA	51.2 in (1300 mm)	
Wheelbase	WB	208 in (5283 mm)	
Overhang	ОН	84 in (2134 mm)	
Overall Length	OA	343.20 in (8717 mm)	
Bumper to Back of Cab	BBC	113.60 in (2885 mm)	
Effective Bumper to Back of Cab	EBBC	See table below.	
Cab to Rear Axle	CA	145.60 (3698)	
Effective Cab to Rear Axle	ECA	See table below.	
Front Axle to Back of Cab	AC	62.40 in (1585 mm)	
Effective Front Axle to Back of Cab	EAC	See table below.	
Cab to End of Frame	CE	229.60 in (5832 mm)	
Effective Cab to End of Frame	ECE	See table below.	
Bogie Spread	BS	108 in (2743 mm)	
Unladen Fifth Wheel Height	FWH	50.50 in (1283 mm)	
Unladen Frame Height	FH	41.01 in (1042 mm)	
Cab Height	СН	74.30 in (1887 mm)	
Overall Height	OVH	115.31 in (2929 mm)	
Driver CG	DCG	42 in (1067 mm)	
Width of Rear of Cab	WROC	89 in (2261 mm)	
Mirror Width	MW	117.45 in (2983 mm)	
Cab Width	W	95 in (2413 mm)	

	EAC	ECA	EBBC	ECE
Single Stack	75.90 in (1928 mm)	132.10 in (3355 mm)	127.10 in (3228 mm)	216.10 in (5489 mm)
Dual Stack	79.76 in (2026 mm)	128.24 in (3257 mm)	130.96 in (3326 mm)	212.24 in (5391 mm)
Vertical SCR	84.01 in (2134 mm)	123.99 in (3149 mm)	135.21 in (3434 mm)	207.99 in (5283 mm)

Chassis Diagrams, VAH

VAH 200, Truck, Axle Forward, 6 x 4

W9057063


Fig. 16 VAH 200, Truck, Axle Forward, 6 x 4

	See Fig. 1	6
	Dimension	ns
Description	Drawing Reference	Dimension
Front Frame Extension	FE	0 in (0 mm)
Bumper to Front Axle	BA	29.10 in (739 mm)
Wheelbase	WB	237 in (6020 mm)
Overhang	ОН	62 in (1575 mm)
Overall Length	OA	328.10 in (8334 mm)
Bumper to Back of Cab	BBC	113.60 in (2885 mm)
Cab to Rear Axle	CA	152.50 in (3874 mm)
Front Axle to Back of Cab	AC	84.50 in (2146 mm)
Cab to End of Frame	CE	214.50 in (5448 mm)
Bogie Spread	BS	52 in (1321 mm)
Unladen Frame Height	FH	35.70 in (907 mm)
Cab Height	СН	74.30 in (1887 mm)
Overall Height	OVH	110 in (2794 mm)
Driver CG	DCG	64.50 in (1638 mm)
Width of Rear of Cab	WROC	89 in (2261 mm)
Mirror Width	MW	117.45 in (2983 mm)
Cab Width	W	95 in (2413 mm)

Notes		

Chassis Diagrams, VNM / VNR

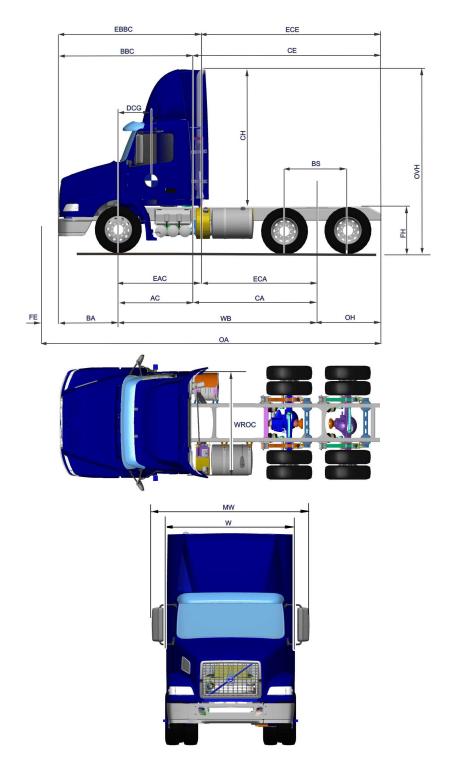
VNM 200 / VNR 200, Truck, Axle Back, 4 x 2

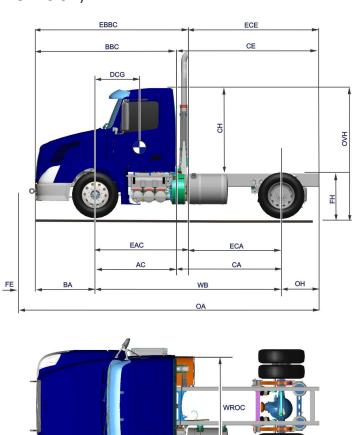
W9056682

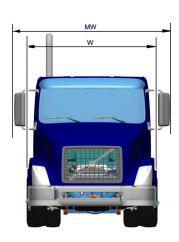
Fig. 17 VNM 200 / VNR 200, Truck, Axle Back, 4 x 2

See Fig. 17					
	Dimensions				
Description	Drawing Reference	Dimension			
Front Frame Extension	FE	0 in (0 mm)			
Bumper to Front Axle	BA	51.10 in (1298 mm)			
Wheelbase	WB	152 in (3861 mm)			
Overhang	ОН	33 in (838 mm)			
Overall Length	OA	236.10 in (5997 mm)			
Bumper to Back of Cab	BBC	113.50 in (2883 mm)			
Effective Bumper to Back of Cab	EBBC	See table below.			
Cab to Rear Axle	CA	89.60 in (2276 mm)			
Effective Cab to Rear Axle	ECA	See table below.			
Axle to Back of Cab	AC	62.40 in (1585 mm)			
Effective Front Axle to Back of Cab	EAC	See table below.			
Cab to End of Frame	CE	122.60 in (3114 mm)			
Effective Cab to End of Frame	ECE	See table below.			
Unladen Fifth Wheel Height	FWH	47.50 in (1207 mm)			
Unladen Frame Height	FH	38.60 in (980 mm)			
Cab Height	СН	75 in (1905 mm)			
Overall Height	OVH	113.60 in (2885 mm)			
Driver CG	DCG	42 in (1067 mm)			
Width of Rear of Cab	WROC	89 in (2261 mm)			
Mirror Width	MW	116 in (2946 mm)			
Cab Width	W	95 in (2413 mm)			

	EAC	ECA	EBBC	ECE
Single Stack	75.91 in (1928 mm)	76.09 in (1933 mm)	127.01 in (3226 mm)	109.09 in (2771 mm)
Dual Stack	N/A	N/A	N/A	N/A
Vertical SCR	84.01 in (2134 mm)	67.99 in (1727 mm)	135.11 in (3432 mm)	100.99 in (2565 mm)




Fig. 18 VNM 200 / VNR 200, Truck, 6 x 4


	See Fig. 18				
	[Dimensions			
Description	Drawing Reference	Dimension			
Front Frame Extension	FE	0 in (0 mm)			
Bumper to Front Axle	BA	51.10 in (1298 mm)			
Wheelbase	WB	170 in (4318 mm)			
Overhang	ОН	55 in (1397 mm)			
Overall Length	OA	276.10 in (7013 mm)			
Bumper to Back of Cab	BBC	113.60 in (2885 mm)			
Effective Bumper to Back of Cab	EBBC	See table below.			
Cab to Rear Axle	CA	107.60 in (2733 mm)			
Effective Cab to Rear Axle	ECA	See table below.			
Axle to Back of Cab	AC	62.40 in (1585 mm)			
Effective Front Axle to Back of Cab	EAC	See table below.			
Cab to End of Frame	CE	162.50 in (4128 mm)			
Effective Cab to End of Frame	ECE	See table below.			
Bogie Spread	BS	52 in (1321 mm)			
Unladen Frame Height	FH	38.60 in (980 mm)			
Cab Height	СН	75 in (1905 mm)			
Overall Height	OVH	113.60 in (2885 mm)			
Driver CG	DCG	42 in (1067 mm)			
Width of Rear of Cab	WROC	89 in (2261 mm)			
Mirror Width	MW	117.45 in (2983 mm)			
Cab Width	W	95 in (2413 mm)			

	EAC	ECA	EBBC	ECE
Single Stack	75.91 in (1928 mm)	94.09 in (2390 mm)	127.01 in (3226 mm)	149.09 in (3787 mm)
Dual Stack	N/A	N/A	N/A	N/A
Vertical SCR	84.02 in (2134 mm)	85.98 in (2184 mm)	135.12 in (3432 mm)	140.98 in (3581 mm)

Chassis Diagrams, VNL

VNL 300, Truck, Axle Back, 4 x 2

W9034901

Fig. 19 VNL 300, Truck, Axle Back, 4 x 2

See Fig. 19			
	[Dimensions	
Description	Drawing Reference	Dimension (in/mm)	
Front Frame Extension	FE	0 in (0 mm)	
Bumper to Front Axle	ВА	52.20 in (1326 mm)	
Wheelbase	WB	152 in (3861 mm)	
Overhang	ОН	33 in (838 mm)	
Overall Length	OA	237.20 in (6025 mm)	
Bumper to Back of Cab	BBC	122.40 in (3109 mm)	
Effective Bumper to Back of Cab	EBBC	See table below.	
Cab to Rear Axle	CA	81.80 in (2078 mm)	
Effective Cab to Rear Axle	ECA	See table below.	
Axle to Back of Cab	AC	70.20 in (1783 mm)	
Effective Front Axle to Back of Cab	EAC	See table below.	
Cab to End of Frame	CE	114.80 in (2916 mm)	
Effective Cab to End of Frame	ECE	See table below.	
Unladen Frame Height	FH	38.60 in (980 mm)	
Cab Height	СН	75 in (1905 mm)	
Overall Height	OVH	113.60 in (2885 mm)	
Driver CG	DCG	42 in (1067 mm)	
Width of Rear of Cab	WROC	89 in (2261 mm)	
Mirror Width	MW	116 in (2946 mm)	
Cab Width	W	95 in (2413 mm)	

	EAC	ECA	EBBC	ECE
Single Stack	80.75 in (2051 mm)	71.25 in (1810 mm)	132.95 in (3377 mm)	104.25 in (2648 mm)
Dual Stack	N/A	N/A	N/A	N/A
Vertical SCR	91.89 in (2334 mm)	60.11 in (1527 mm)	144.09 in (3660 mm)	93.11 in (2365 mm)

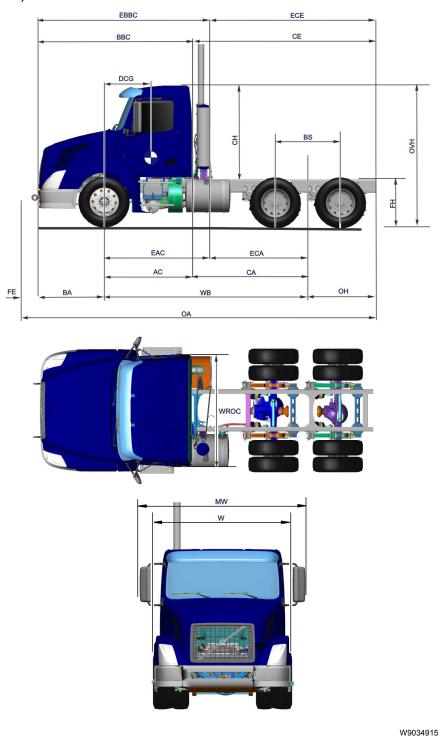
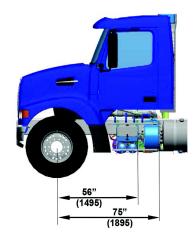


Fig. 20 VNL 300, Truck, 6 x 4

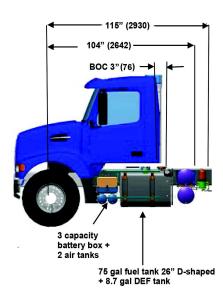

All Rights Reserved

	See Fig. 20			
	Ī	Dimensions		
Description	Drawing Reference	Dimension (in/mm)		
Front Frame Extension	FE	0 in (0 mm)		
Bumper to Front Axle	BA	52.20 in (1326 mm)		
Wheelbase	WB	170 in (4318 mm)		
Overhang	ОН	55 in (1397 mm)		
Overall Length	OA	277.20 in (7041 mm)		
Bumper to Back of Cab	BBC	122.40 in (3109 mm)		
Effective Bumper to Back of Cab	EBBC	See table below.		
Cab to Rear Axle	CA	99.80 in (2535 mm)		
Effective Cab to Rear Axle	ECA	See table below.		
Front Axle to Back of Cab	AC	70.20 in (1783 mm)		
Effective Front Axle to Back of Cab	EAC	See table below.		
Cab to End of Frame	CE	154.80 in (3932 mm)		
Effective Cab to End of Frame	ECE	See table below.		
Bogie Spread	BS	52 in (1321 mm)		
Unladen Frame Height	FH	38.60 in (980 mm)		
Cab Height	СН	75 in (1905 mm)		
Overall Height	OVH	113.60 in (2885 mm)		
Driver CG	DCG	50 in (1270 mm)		
Width of Rear of Cab	WROC	89 in (2261 mm)		
Mirror Width	MW	116 in (2946 mm)		
Cab Width	W	95 in (2413 mm)		

	EAC	ECA	EBBC	ECE
Single Stack	80.75 in (2051 mm)	89.25 in (2267 mm)	132.95 in (3377 mm)	144.25 in (3664 mm)
Dual Stack	N/A	N/A	N/A	N/A
Vertical SCR	91.89 in (2334 mm)	78.11 in (1984 mm)	144.09 in (3660 mm)	133.11 in (3381 mm)

Chassis Configurations, VHD

VHD Axle Forward, Left-Hand Chassis Configuration


W0118134

(1895) (2295)

W0118135

Three battery capacity battery box

Four battery capacity battery box

W0118136

121" (3073) 104" (2642) BOC 3" (76) 3 capacity battery box + 2 air tanks 100 gal fuel tank 26" D-shaped +8.7 gal DEF tank

W0118137

Clean Back of Cab w/75 gal fuel tank (920012)

Clean Back of Cab w/100 gal fuel tank (920013)

VHD Axle Forward, Right-Hand Chassis Configuration, GHG 2017

W0118138

W0118139

Integrated DPF/SCR with three battery box driver side and frame mounted air tanks (also used on VAH)

Integrated DPF/SCR with four battery box driver side

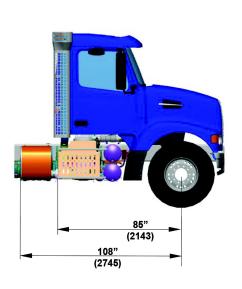
W0118140

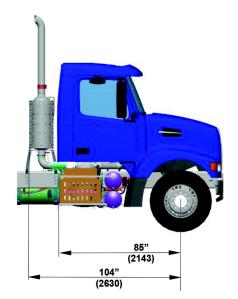
W0118141

Clean Back of Cab Package, 75 or 100 Gallon D-Shaped fuel tank with Integrated DEF tank

Date 7.2017

Integrated DPF/SCR four battery box driver side


Integrated DPF/SCR four battery box driver side

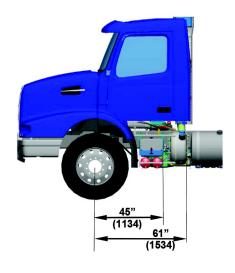

Notes			

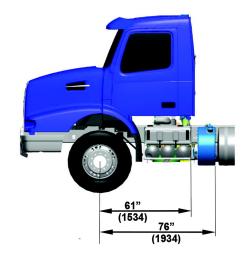
Date 7.2017

All Rights Reserved

VHD Axle Forward, Right-Hand Chassis Configuration, US 2010

Vertical mounted SCR

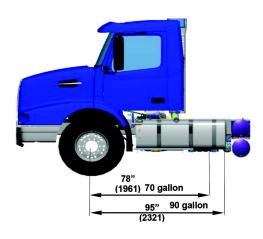

W0118143

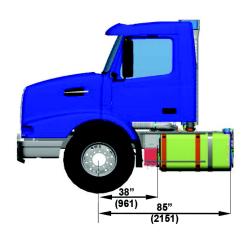

Frame mounted SCR

Notes

W0118144

VHD Day Cab Axle Back, Left-Hand Chassis Configuration



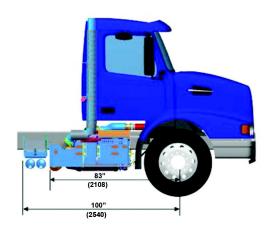

W0118119

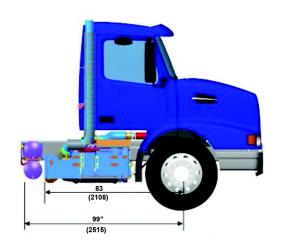
W0118120

Three battery capacity battery box

Four battery capacity battery box

W0118122

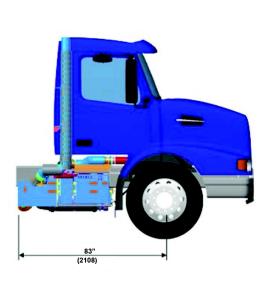

W0118121


Battery box mounted on right side

Date 7.2017

Narrow stacked three capacity battery box

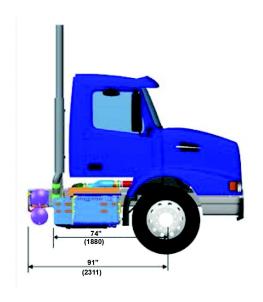
VHD Axle Back, Right-Hand Chassis Configuration, GHG 2017



W0118123 W0118124

Integrated DPF/SCR with three battery box passenger side

Integrated DPF/SCR with three battery box driver side and frame mounted air tanks

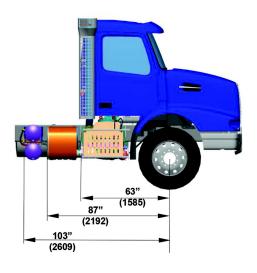


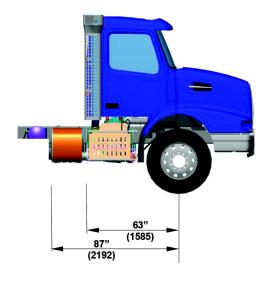
W0118125 W0118126

Integrated DPF/SCR with four battery box driver side

Date 7.2017

Integrated DPF/SCR with three battery box driver side

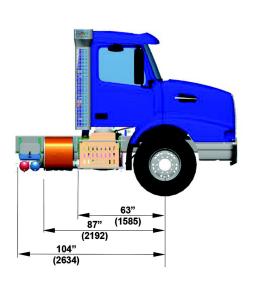

W0118128

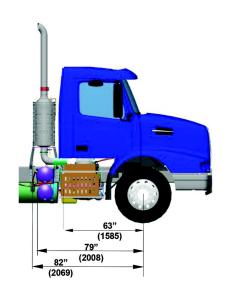

Integrated DPF/SCR with four battery box driver side

Integrated DPF/SCR with four battery box driver side

Notes			

VHD Axle Back, Right-Hand Chassis Configuration, US 2010




W0118129

W0118130

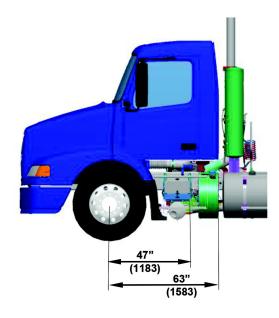
Frame mounted SCR with Air Tank Arrangement, Basic

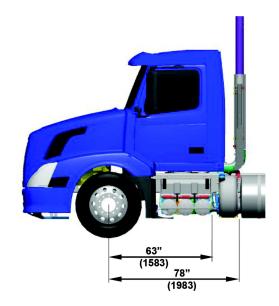
Frame mounted SCR with In Frame Air Tanks

W0118131

W0118132

Frame mounted SCR


Date 7.2017


Vertical mounted SCR

All Rights Reserved

Chassis Configurations, VN

VN Day Cabs, Left-Hand Chassis Configuration

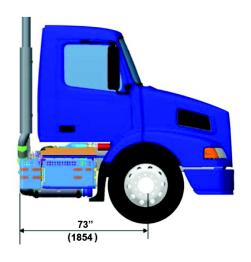
W0118215

W0118216

VNM / VNR – Three battery capacity battery box

Date 7.2017

VNL – Four battery capacity battery box


Notes		


All Rights Reserved

VN Day Cabs, Right-Hand Chassis Configuration, GHG 2017

VNM / VNR Day Cabs

The VNM / VNR day cabs with Volvo D11 or D13 engines.

W0118217

W0118218

Volvo D11 or D13 engine, Integrated DPF/SCR

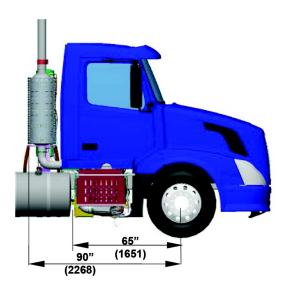
Date 7.2017

Volvo D11 or D13 engine, Integrated DPF/SCR with B-pillar exhaust

Notes		 	 	

VNL Day Cabs

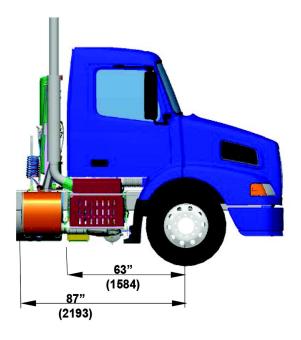
VNL day cabs with Volvo D11 or D13 engines.



W0118220

W0118221

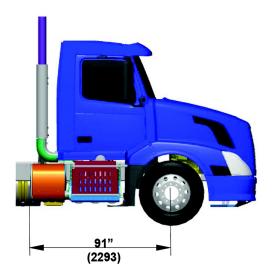
Volvo D11 or D13 engine, Integrated DPF/SCR

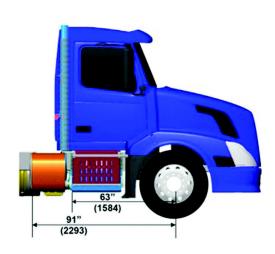

Volvo D11 or D13 engine, Integrated DPF/SCR with B-Pillar exhaust

W0118222

D11, D13, or D16 engine, Frame mounted DPF with vertical SCR

VNM / VNR Day Cabs, Right-Hand Chassis Configuration, US 2010

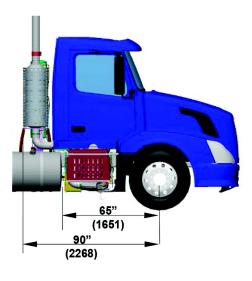

W0118219


Volvo 11 and 13-liter engine, Frame mounted SCR

Notes		

VN Day Cabs, Right-Hand Chassis Configuration, GHG 2017

VNL or VNX day cabs with Volvo D16 engines.

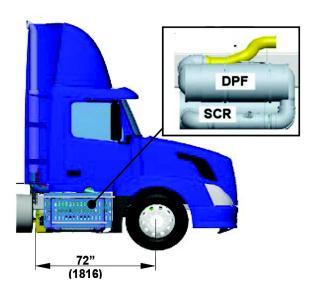


W0118223

W0118224

Volvo D16 engine, Frame mounted SCR

Volvo D16 engine, Frame mounted SCR



W0118225

Volvo D16 engine, Frame mounted DPF with vertical SCR

Date 7.2017

All Rights Reserved

Cummins 15-liter engine, Frame mounted SCR

Notes			

Fuel Tank Position, VHD

Fuel Tank Position (FTP) indicates the distance the fuel tanks are located from the front axle.

The VHD has multiple battery mounting options available and two SCR locations on the passenger side. This chassis configuration section will help in determining the optimum chassis configurations.

The fuel tank configurations are offered in single driver side or dual tank options. Dual fuel tanks may not always be symmetrical, depending on chassis configurations. However, different size fuel tanks on the driver side and passenger side may be chosen to make the chassis look symmetrical.

In addition, new "D-shaped" tanks are available to shorten wheelbases with the same capacity fuel tank. The D-shaped tanks provide approximately a 10% shorter fuel tank, which reduces overall fuel tank length approximately three to seven inches. The fuel tank lengths are shown in the table below.

Fuel Tank Lengths for VHD Models

		Fuel Tank Length						
		Round		D-shaped				
Сар	Capacity		26" dia.		26" dia.		22" dia.	
Gal.	Liters	Inches	mm	Inches	mm	Inches	mm	
50	190	25.2	640	22.5	572	30.9	786	
70	265	N/A	N/A	N/A	N/A	40.6	1032	
75	285	36.0	914	32.2	817	N/A	N/A	
90	340	N/A	N/A	N/A	N/A	54.0	1372	
100	380	46.0	1168	41.1	1044	N/A	N/A	
125	475	58.0	1473	51.9	1317	70.5	1791	
150	570	70.0	1778	62.6	1590	84.6	2148	

VHD Axle Forward, Left-Hand Fuel Tank Position

Date 7.2017

The left-hand fuel tank position is dependent on the battery box configuration, three or four battery capacity battery boxes. The fuel tanks are mounted in the same location regardless of the DEF tank size, i.e., 11.9 gallons (45.0 L) or 18.5 gallons (70.0 L), because they are the same width.

Notes		

	See I	Fig. 21				
	Three (3) Battery Capacity Battery Box					
	VHD Axle Forward					
Fuel Tank Dia	Capacity gals (L)	Distance to Front Axle, in. (mm)				
Tuer funk blu		Α	В			
	Round Fuel Tanks					
	75 (285)	76 (1930)	112 (2845)			
26'	100 (380)	76 (1930)	122 (3098)			
	125 (475)	76 (1930)	134 (3404)			
	D-shaped Fuel Tanks					
	50 (190)	76 (1930)	107 (2722)			
22'	70 (265)	76 (1930)	117 (2967)			
	90 (340)	76 (1930)	130 (3307)			
	75 (285)	76 (1930)	108 (2752)			
26'	100 (380)	76 (1930)	117 (2979)			
	125 (475)	76 (1930)	128 (3252)			

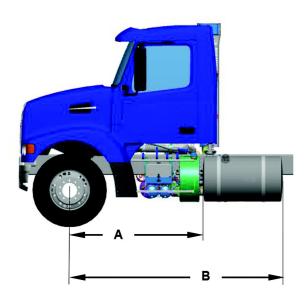


Fig. 21 VHD Axle Forward, Three Battery Capacity Battery Box

Date 7.2017

All Rights Reserved

	See Fi	ig. 22					
	Four (4) Battery Ca	pacity Battery Box					
	VHD Axle Forward						
Fuel Tank Dia.	Capacity gals (L)	Distance to Front Axle, in. (mm)					
i dei fallk Dia.		Α	В				
	Round Fu	iel Tanks					
	75 (285)	92 (2337)	128 (3251)				
26'	100 (380)	92 (2337)	138 (3505)				
	125 (475)	92 (2337)	150 (3810)				
	D-shaped F	uel Tanks					
22'	50 (190)	92 (2337)	123 (3124)				
	70 (265)	92 (2337)	132 (3353)				
	90 (340)	92 (2337)	146 (3708)				
	75 (285)	92 (2337)	124 (3150)				
26'	100 (380)	92 (2337)	133 (3379)				
	125 (475)	92 (2337)	144 (3658)				

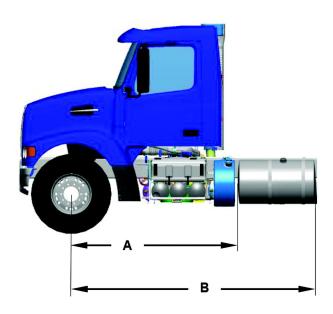
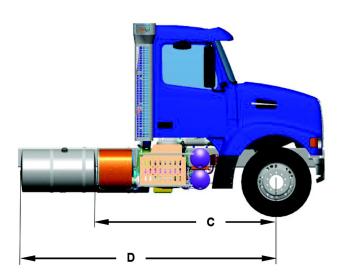



Fig. 22 VHD Axle Forward, Four Battery Capacity Battery Box

VHD Axle Forward, Right-Hand Fuel Tank Position

On the VHD axle forward model, the right-hand fuel tank position is dependent on the SCR configuration, frame mounted or vertical SCR.

	See F	ig. 23				
	Frame Mounted	SCR US 2010				
VHD Axle Forward						
Fuel Tank Dia.	Capacity gals (L)	Distance to Front Axle, in. (mm)				
Fuel fallk Dia.	Capacity gais (L)	С	D			
	Round Fu	iel Tanks				
	75 (285)	110 (2794)	146 (3708)			
26'	100 (380)	110 (2794)	156 (3962)			
	125 (475)	110 (2794)	168 (4267)			
	D-shaped F	uel Tanks				
22'	50 (190)	110 (2794)	141 (3581)			
	70 (265)	110 (2794)	150 (3810)			
	90 (340)	110 (2794)	164 (4166)			
26'	75 (285)	110 (2794)	142 (3607)			
	100 (380)	110 (2794)	151 (3836)			
	125 (475)	110 (2794)	162 (4115)			

W0118240

Fig. 23 VHD Axle Forward, Frame Mounted SCR US 2010

See Fig. 24 Vertical Mounted SCR US 2010						
					VHD Axle Forward	
Fuel Tank Dia.	Capacity gals (L)	Distance to Front Axle, in. (mm)				
ruei ialik Dia.		С	D			
	Round F	uel Tanks				
	75 (285)	86 (2185)	122 (3099)			
26'	100 (380)	86 (2185)	132 (3353)			
	125 (475)	86 (2185)	144 (3658)			
	D-shaped Fuel Tanks					
	50 (190)	86 (2185)	117 (2972)			
22'	70 (265)	86 (2185)	127 (3226)			
	90 (340)	86 (2185)	140 (3557)			
26'	75 (285)	86 (2185)	118 (2997)			
	100 (380)	86 (2185)	127 (3226)			
	125 (475)	86 (2185)	138 (3505)			

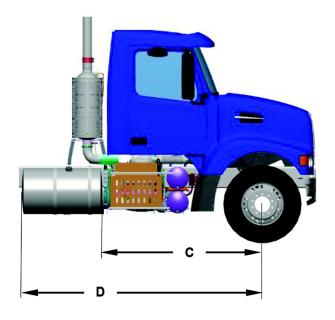


Fig. 24 VHD Axle Forward, Vertical Mounted SCR US 2010

	See I	Fig. 25	
	Integrated DPF	SCR GHG 2017	
	VHD AxI	e Forward	
Fuel Tank Dia.	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
r der fank bia.	cupusity gails (=)	С	D
	Round F	uel Tanks	
	75 (285)	90 (2286)	126 (3200)
26'	100 (380)	90 (2286)	136 (3454)
	125 (475)	90 (2286)	148 (3759)
	D-shaped	Fuel Tanks	
	50 (190)	90 (2286)	113 (2870)
22'	70 (265)	90 (2286)	150 (3810)
	90 (340)	90 (2286)	144 (3658)
	75 (285)	90 (2286)	122 (3099)
26'	100 (380)	90 (2286)	131 (3327)
	125 (475)	90 (2286)	142 (3607)

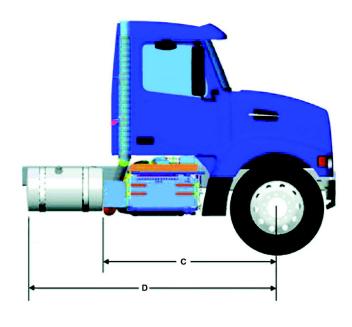


Fig. 25 VHD Axle Forward, Integrated DPF/SCR GHG 2017

	See F	ig. 26	
	Integrated DPF/SCR (GHG 2017 Clean BOC	
	VHD Axle	Forward	
Fuel Tank Dia.	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
ruei ialik bia.	oupuoity guis (L)	С	D
	Round Fu	iel Tanks	
	75 (285)	85 (2159)	121 (3073)
26'	100 (380)	85 (2159)	131 (3327)
	125 (475)	85 (2159)	143 (3632)
	D-shaped F	uel Tanks	
	50 (190)	85 (2159)	116 (2946)
22'	70 (265)	85 (2159)	126 (3200)
	90 (340)	85 (2159)	139 (3531)
	75 (285)	85 (2159)	117 (2972)
26'	100 (380)	85 (2159)	126 (3200)
	125 (475)	85 (2159)	137 (3480)

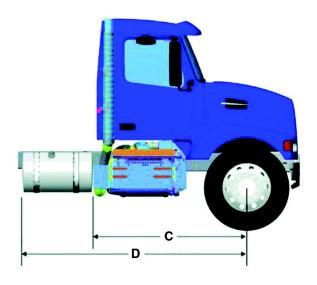


Fig. 26 VHD Axle Forward, Integrated DPF/SCR GHG 2017 Clean BOC

	See Fi	g. 27	
	Integrated DPF/S	SCR GHG 2017	
	VHD Axle	Forward	
Fuel Tank Dia.	Capacity gals (L)	Distance to Froi	nt Axle, in. (mm)
i dei ialik bia.	Supusity gaio (1)	С	D
	Round Fu	el Tanks	
	75 (285)	85 (2159)	121 (3073)
26'	100 (380)	85 (2159)	131 (3327)
	125 (475)	85 (2159)	143 (3632)
	D-shaped F	uel Tanks	
	50 (190)	85 (2159)	116 (2946)
22'	70 (265)	85 (2159)	126 (3200)
	90 (340)	85 (2159)	139 (3531)
	75 (285)	85 (2159)	117 (2972)
26'	100 (380)	85 (2159)	126 (3200)
	125 (475)	85 (2159)	137 (3480)

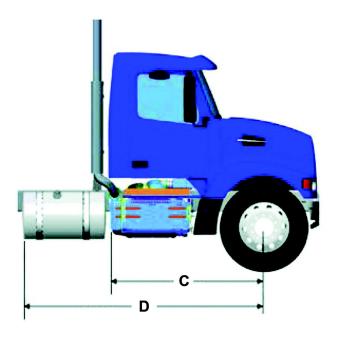
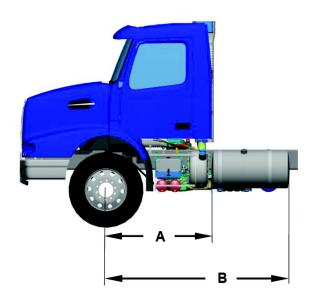
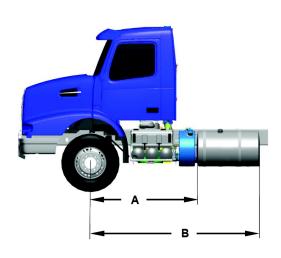
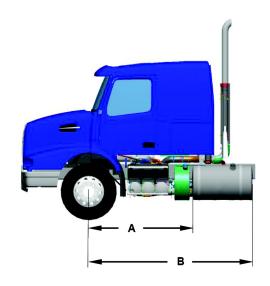



Fig. 27 VHD Axle Forward, Integrated DPF/SCR GHG 2017

VHD Axle Back, Left-Hand Fuel Tank Position

The left-hand fuel tank position is dependent on the battery box configuration, three or four battery capacity battery boxes. The fuel tanks are mounted in the same location regardless of the DEF tank size, i.e., 11.9 gallons (45.0 L) or 18.5 gallons (70.0 L), because they are the same width.


	See F	ig. 28	
	Three (3) Battery C	apacity Battery Box	
	VHD Ax	le Back	
Fuel Tank Dia.	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
ruei ialik Dia.	Capacity gais (L)	Α	В
	Round F	uel Tanks	
	75 (285)	62 (1575)	98 (2489)
26'	100 (380)	62 (1575)	108 (2743)
	125 (475)	62 (1575)	120 (3048)
	D-shaped	Fuel Tanks	
	50 (190)	62 (1575)	93 (2262)
22'	70 (265)	62 (1575)	103 (2616)
	90 (340)	62 (1575)	116 (2946)
	75 (285)	62 (1575)	94 (2388)
26'	100 (380)	62 (1575)	103 (2616)
	125 (475)	62 (1575)	114 (2896)

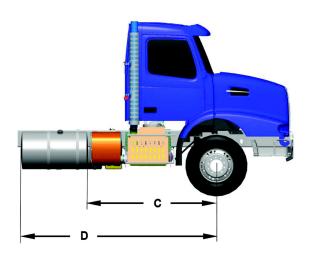


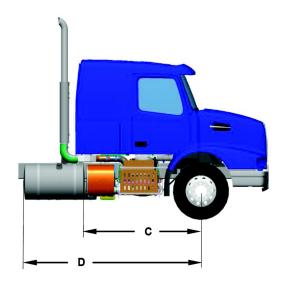
W0118242

Fig. 28 VHD Axle Back, Three Battery Capacity Battery Box

	See Fig. 29	and Fig. 30	
	Four (4) Battery C	apacity Battery Box	
	VHD A	kle Back	
Fuel Tank Dia.	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
r der fank bla.	cupucity gaile (=)	Α	В
	Round F	uel Tanks	
	75 (285)	77 (1956)	113 (2870)
26'	100 (380)	77 (1956)	123 (3124)
	125 (475)	77 (1956)	135 (3429)
	D-shaped	Fuel Tanks	
	50 (190)	77 (1956)	108 (2743)
22'	70 (265)	77 (1956)	118 (2997)
	90 (340)	77 (1956)	131 (3327)
	75 (285)	77 (1956)	109 (2769)
26'	100 (380)	77 (1956)	118 (2997)
	125 (475)	77 (1956)	129 (3277)

W0118243 W0118244


Fig. 29 VHD Axle Back, Four Battery Capacity Battery Box


Fig. 30 VHD Axle Back, Four Battery Capacity Battery Box

VHD Axle Back, Right-Hand Fuel Tank Position

On the VHD Axle Back model, the right-hand fuel tank position is dependent on the SCR configuration, frame mounted or vertical SCR and the air tank arrangement.

	See Fig. 31	and Fig. 32	
	Frame Mounte	d SCR US 2010	
	VHD Ax	le Back	
Fuel Tank Dia.	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
ruei ialik Dia.	Capacity gais (L)	С	D
	Round Fo	uel Tanks	
	75 (285)	88 (2235)	124 (3150)
26'	100 (380)	88 (2235)	134 (3404)
	125 (475)	88 (2235)	146 (3708)
	D-shaped	Fuel Tanks	
	50 (190)	88 (2235)	119 (3023)
22'	70 (265)	88 (2235)	128 (3251)
	90 (340)	88 (2235)	142 (3607)
26'	75 (285)	88 (2235)	120 (3048)
	100 (380)	88 (2235)	129 (3277)
	125 (475)	88 (2235)	140 (3556)

W0118245 W0118246

Fig. 31 VHD Axle Back, Frame Mounted SCR US 2010

Fig. 32 VHD Axle Back, Frame Mounted SCR US 2010

	See	Fig. 33	
	Vertical Mount	ed SCR US 2010	
	VHD A	xle Back	
Fuel Tank Dia.	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
ruei ialik bia.	oapacity gais (E)	С	D
	Round F	uel Tanks	
	75 (285)	64 (1625)	100 (2540)
26'	100 (380)	64 (1625)	110 (2794)
	125 (475)	64 (1625)	116 (2946)
	D-shaped	Fuel Tanks	
	50 (190)	64 (1625)	95 (2413)
22'	70 (265)	64 (1625)	105 (2667)
	90 (340)	64 (1625)	118 (2997)
	75 (285)	64 (1625)	96 (2438)
26'	100 (380)	64 (1625)	105 (2667)
	125 (475)	64 (1625)	116 (2946)

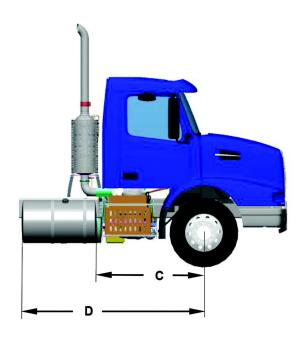


Fig. 33 VHD Axle Back, Vertical Mounted SCR US 2010

	See Fi ç	g. 34	
	Integrated DPF/S	SCR GHG 2017	
	VHD Axle	e Back	
Fuel Tank Dia.	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
i dei ialik Dia.	Supusity gaio (2)	С	D
	Round Fue	el Tanks	
	75 (285)	83 (2108)	119 (3023)
26'	100 (380)	83 (2108)	129 (3277)
	125 (475)	83 (2108)	141 (3581)
	D-shaped F	uel Tanks	
	50 (190)	83 (2108)	114 (2896)
22'	70 (265)	83 (2108)	124 (3150)
	90 (340)	83 (2108)	137 (3480)
	75 (285)	83 (2108)	115 (2921)
26'	100 (380)	83 (2108)	124 (3150)
	125 (475)	83 (2108)	135 (3429)

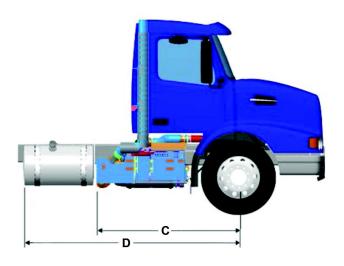


Fig. 34 VHD Axle Back, Integrated DPF/SCR GHG 2017

	See Fi	g. 35	
	Integrated DPF/S	SCR GHG 2017	
	VHD Axi	e Back	
Fuel Tank Dia.	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
r der fank bla.	cupucity gails (2)	С	D
	Round Fu	el Tanks	
	75 (285)	74 (1880)	110 (2794)
26'	100 (380)	74 (1880)	120 (3048)
	125 (475)	74 (1880)	132 (3353)
	D-shaped F	uel Tanks	
	50 (190)	74 (1880)	105 (2667)
22'	70 (265)	74 (1880)	115 (2921)
	90 (340)	74 (1880)	128 (3251)
	75 (285)	74 (1880)	106 (2692)
26'	100 (380)	74 (1880)	115 (2921)
	125 (475)	74 (1880)	126 (3200)

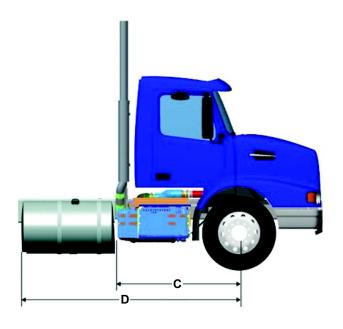


Fig. 35 VHD Axle Back, Integrated DPF/SCR GHG 2017

Fuel Tank Position, VN

Fuel Tank Position (FTP) indicates the distance the fuel tanks are located from the front axle.

There are multiple battery mounting options available on the driver's side and multiple SCR combinations provided on the passenger side. This chassis configuration section will help in determining the optimum chassis configurations.

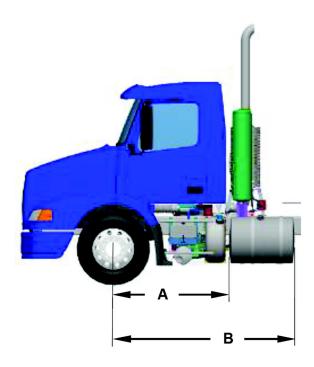
The fuel tank configurations are offered in single driver side, single passenger side or dual tank options. Dual fuel tanks may not always be symmetrical, depending on chassis configurations. However, different size fuel tanks on the driver side and passenger side may be chosen to make the chassis look symmetrical.

In addition, "D-shaped" tanks are available to shorten wheelbases with the same capacity fuel tank. The D-shaped tanks provide approximately a 10% shorter fuel tank, which reduces overall fuel tank length approximately three to seven inches. The fuel tank lengths are shown in the table below.

Fuel Tank Lengths for VN Models

		Fuel Tank Length			
		Round		D-shaped	
Сара	acity	26" dia. 26" dia.		dia.	
Gal.	Liters	Inches	mm	Inches	mm
50	190	25.2	640	22.5	572
75	285	36	914	32.2	817
100	380	46	1168	41.1	1044
125	475	58	1473	51.9	1317
150	570	70	1778	62.6	1590

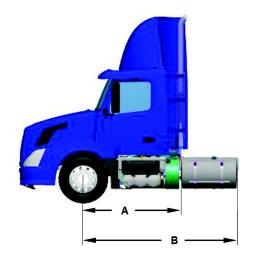
Notes		
·	 	

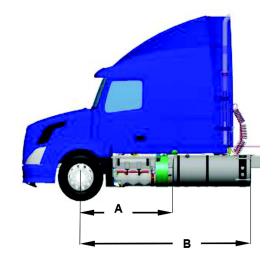

Body Builder, General Guidelines and Certification

Page 82 (92)

Left-Hand Fuel Tank Position for VN Models

The left-hand fuel tank position is dependent on the battery box configuration, three or four battery capacity battery boxes.


See Fig. 36							
	Three (3) Battery Capacity Battery Box						
	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)				
	oupuoity guis (L)	Α	В				
		Round Fuel Tanks					
	75(285)	64 (1626)	100 (2540)				
	100 (380)	64 (1626)	110 (2794)				
VNL300 / VNM200 /	125 (475)	64 (1626)	122 (3099)				
VNR200	150 (570)	64 (1626)	134 (3404)				
	D-shaped Fuel Tanks						
Γ	75(285)	64 (1626)	96 (2438)				
	100 (380)	64 (1626)	105 (2667)				
	125 (475)	64 (1626)	116 (2946)				
	150 (570)	64 (1626)	127 (3226)				



W0118314

Fig. 36 Three Battery Capacity Battery Box

		See Fig. 37 and Fig	. 38			
		Four (4) Battery Capacity E	Battery Box			
Model	Cab	Capacity gals (L)	Distance to Front Axle, in. (mm)			
Model	Cab	Supudity guio (1)	Α	В		
		Round Fuel Tank	(S			
	75 (285) 79 (2007) 115.3 (2929)					
VAII 200 / VAII	M200 / VND200	100 (380)	79 (2007)	125.3 (3183)		
VNL300 / VNM200 / VNR200		125 (475)	79 (2007)	137.3 (3488)		
		150 (570)	79 (2007)	149.3 (3793)		
		D-shaped Fuel Tar	nks			
		75 (285)	79 (2007)	111.9 (2842)		
1/11	200	100 (380)	79 (2007)	120.8 (3069)		
VNL	300	125 (475)	79 (2007)	131.6 (3342)		
		150 (570)	79 (2007)	142.3 (3615)		
		75 (285)	79 (2007)	113.5 (2882)		
VAIM (VAID	200	100 (380)	79 (2007)	120.4 (3059)		
VNM / VNR	200	125 (475)	79 (2007)	131.2 (3332)		
		150 (570)	79 (2007)	141.9 (3605)		

W0118315 W0118316

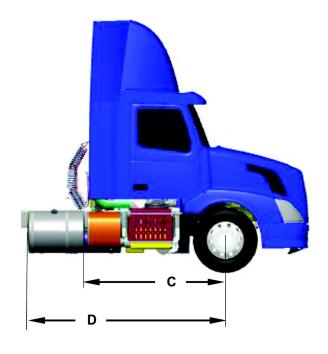

Fig. 37 Four Battery Capacity Battery Box

Fig. 38 Four Battery Capacity Battery Box

Right-Hand Fuel Tank Position for VN Models

The right-hand fuel tank position is dependent on the engine selection (SCR unit size) and SCR configuration.

See Fig. 39							
	Volvo D11 or Volvo D13 Engine						
		Frame Mounted SCR	US 2010				
Model	Model Cab Capacity gals (L) Distance to Front Axle, in. (mm)						
Woder	Cab	oupdony guio (2)	С	D			
		Round Fuel Tan	ks				
		50 (190)	88 (2235)	113 (2870)			
		75 (285)	88 (2235)	124 (3150)			
VNL / VNM / VNR	ALL	100 (380)	88 (2235)	134 (3404)			
		125 (475)	88 (2235)	146 (3708)			
		150 (570)	88 (2235)	158 (4013)			
		D-shaped Fuel Ta	nks				
		50 (190)	88 (2235)	110 (2794)			
		75 (285)	88 (2235)	120 (3048)			
VNL	300	100 (380)	88 (2235)	129 (3277)			
		125 (475)	88 (2235)	140 (3556)			
		150 (570)	88 (2235)	150 (3810)			

W0118317

Fig. 39 Volvo D11 or Volvo D13 Engine, Frame Mounted SCR US 2010

		See Fig. 40			
		Volvo D11 or Volvo D13	3 Engine		
		Frame Mounted SCR I	US 2010		
Distance to Front Axle, in. (mm)					
Model	Cab	Capacity gals (L)	С	D	
		D-shaped Fuel Ta	nks		
	200	50 (190)	88 (2235)	110 (2794)	
		75 (285)	88 (2235)	120 (3048)	
VNM / VNR		100 (380)	88 (2235)	129 (3277)	
		125 (475)	88 (2235)	140 (3556)	
		150 (570)	88 (2235)	150 (3810)	

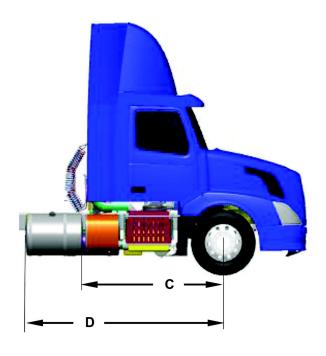


Fig. 40 Volvo D11 or Volvo D13 Engine, Frame Mounted SCR US 2010

		See Fig. 41		
		Volvo D16 Engi	ne	
		Frame Mounted SCR	US 2010	
Model	Cab	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
Woder	Cab	cupacity gails (=)	С	D
		Round Fuel Tan	ks	
		50 (190)	92 (2337)	117 (2972)
	300	75 (285)	92 (2337)	128 (3251)
VNL		100 (380)	92 (2337)	138 (3505)
		125 (475)	92 (2337)	150 (3810)
		150 (570)	92 (2337)	162 (4115)
		D-shaped Fuel Ta	inks	
		50 (190)	92 (2337)	115 (2337)
	300	75 (285)	92 (2337)	124 (3150)
VNL		100 (380)	92 (2337)	133 (3378)
		125 (475)	92 (2337)	144 (3658)
		150 (570)	92 (2337)	155 (3937)

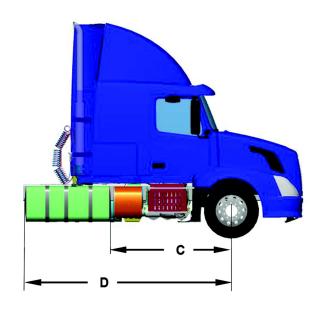


Fig. 41 Volvo D16 Engine, Frame Mounted SCR US 2010

		See Fig. 42		
		Volvo D11 / D13 / D16 I	Engine	
		Vertical SCR US 20	010	
Model	Cab	Capacity gals (L)	Distance to Front Axle, in. (mm)	
Model	Cab	oupucity guis (L)	С	D
		Round Fuel Tank	s	
	ALL	50 (190)	64 (1626)	89 (2261)
		75 (285)	64 (1626)	100 (2540)
VNM / VNR / VNL		100 (380)	64 (1626)	110 (2794)
		125 (475)	64 (1626)	122 (3099)
		150 (570)	64 (1626)	134 (3404)
<u> </u>		D-shaped Fuel Tar	nks	
	ALL	50 (190)	64 (1626)	87 (2297)
		75 (285)	64 (1626)	96 (2492)
VNM / VNR / VNL		100 (380)	64 (1626)	105 (2669)
		125 (475)	64 (1626)	116 (2942)
		150 (570)	64 (1626)	127 (3215)

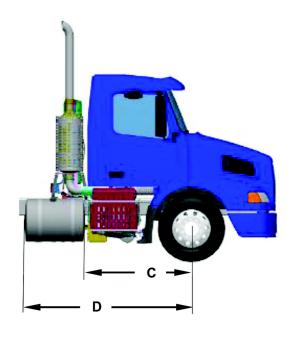


Fig. 42 Volvo D11 / D13 / D16 Engine, Vertical SCR US 2010

		See Fig. 43		
		Cummins ISX 15.0 L E	ngine	
		Switchback Frame Mount	ted SCR	
Model	Cab	Capacity gals (L)	Distance to Fro	ont Axle, in. (mm)
Wodel	Cab	Capacity gais (L)	С	D
		Round Fuel Tanks	5	
	ALL	50 (190)	74 (1880)	99 (2515)
		75 (285)	74 (1880)	110 (2794)
VNL		100 (380)	74 (1880)	120 (3048)
		125 (475)	74 (1880)	132 (3353)
		150 (570)	74 (1880)	144 (3658)
		D-shaped Fuel Tank	ks	
		50 (190)	74 (1880)	100.3 (2547)
	300	75 (285)	74 (1880)	106.0 (2692)
VNL		100 (380)	74 (1880)	114.9 (2919)
		125 (475)	74 (1880)	125.7 (3192)
		150 (570)	74 (1880)	136.4 (3465)

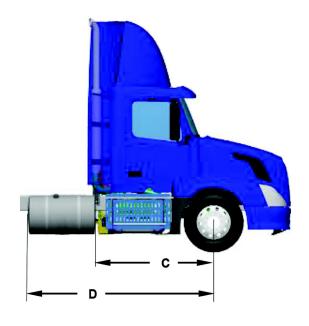


Fig. 43 Cummins ISX 15.0 L Engine, Switchback Frame Mounted SCR

		See Fig. 44		
		Volvo D11 or Volvo D1	3 Engine	
		Integrated DPF/SCR G	HG 2017	
Model	Cab	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
Model	Cab	oupucity guis (L)	С	D
		Round Fuel Tan	ks	
	200	50 (190)	83 (2108)	108 (2743)
		75 (285)	83 (2108)	119 (3023)
VNM / VNR		100 (380)	83 (2108)	129 (3277)
		125 (475)	83 (2108)	141 (3581)
		150 (570)	83 (2108)	153 (3886)
		D-shaped Fuel Ta	nks	
		50 (190)	83 (2108)	106 (2692)
	200	75 (285)	83 (2108)	115 (2921)
VNM / VNR		100 (380)	83 (2108)	124 (3150)
		125 (475)	83 (2108)	135 (3429)
		150 (570)	83 (2108)	146 (3708)

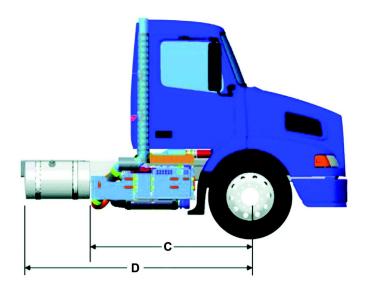
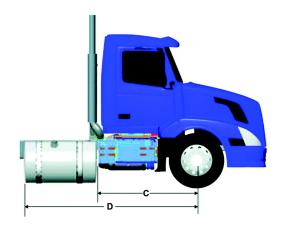
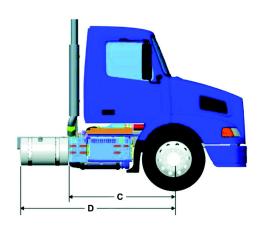




Fig. 44 Volvo D11 or Volvo D13 Engine, Integrated DPF/SCR GHG 2017

		See Fig. 45 and Fig.	. 46	
		Volvo D11 or Volvo D13	Engine	
		Integrated DPF/SCR GF	IG 2017	
Model	Cab	Capacity gals (L)	Distance to Fro	nt Axle, in. (mm)
Wodei	Cab	Capacity gais (L)	С	D
		Round Fuel Tank	s	
		50 (190)	73 (1854)	98 (2489)
VNL300 / VNM200 / VNR200		75 (285)	73 (1854)	109 (2769)
		100 (380)	73 (1854)	119 (3023)
		125 (475)	73 (1854)	131 (3327)
		150 (570)	73 (1854)	143 (3632)
		D-shaped Fuel Tan	ıks	
		50 (190)	73 (1854)	96 (2438)
VNL300 / VNM200 / VNR200		75 (285)	73 (1854)	105 (2667)
		100 (380)	73 (1854)	114 (2896)
		125 (475)	73 (1854)	131 (3327)
		150 (570)	73 (1854)	136 (3454)

W0118329 W0118327

Fig. 45 Volvo D11 or Volvo D13 Engine, Integrated DPF/SCR GHG 2017

Fig. 46 Volvo D11 or Volvo D13 Engine, Integrated DPF/SCR GHG 2017

	S	ee Fig. 47					
	Volvo D11/ D13						
	Integrated I	OPF/SCR GHG 2017					
Model	Capacity gals (L)	Distance to Fr	ont Axle, in. (mm)				
Wodel	Oupacity gais (L)	С	D				
	Rour	d Fuel Tanks					
	50 (190) 81 (2057) 106 (2694)						
	75 (285)	81 (2057)	117 (2972)				
VNL	100 (380)	81 (2057)	127 (3226)				
	125 (475)	81 (2057)	139 (3531)				
	150 (570)	81 (2057)	151 (3835)				
	D-shap	ped Fuel Tanks					
	50 (190)	81 (2057)	104 (2642)				
	75 (285)	81 (2057)	113 (2870)				
VNL	100 (380)	81 (2057)	122 (3099)				
	125 (475)	81 (2057)	133 (3378)				
	150 (570)	81 (2057)	144 (3658)				

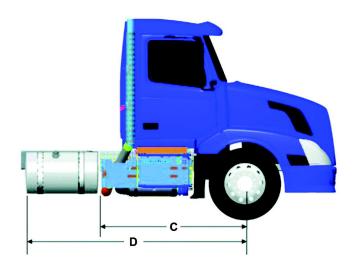


Fig. 47 Volvo D11/ D13, Integrated DPF/SCR GHG 2017